| Citation: | YU Zhong-ru, SHAN De-shan, SUN Rong-hui. Population-based structural health monitoring of bridges: Review and challenges[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 1-22. doi: 10.19818/j.cnki.1671-1637.2025.05.001 |
| [1] |
AN Y H, CHATZI E, SIM S H, et al. Recent progress and future trends on damage identification methods for bridge structures[J]. Structural Control and Health Monitoring, 2019, 26(10): e2416.
|
| [2] |
FIGUEIREDO E, BROWNJOHN J. Three decades of stati-stical pattern recognition paradigm for SHM of bridges[J]. Structural Health Monitoring, 2022, 21(6): 3018-3054. doi: 10.1177/14759217221075241
|
| [3] |
SONY S, DUNPHY K, SADHU A, et al. A systematic review of convolutional neural network-based structural condition assessment techniques[J]. Engineering Structures, 2021, 226: 111347. doi: 10.1016/j.engstruct.2020.111347
|
| [4] |
AZIMI M, ESLAMLOU A D, PEKCAN G. Data-driven struc-tural health monitoring and damage detection through deep learning: State-of-the-art review[J]. Sensors, 2020, 20(10): 2778. doi: 10.3390/s20102778
|
| [5] |
FLAH M, NUNEZ I, BEN CHAABENE W, et al. Machine learning algorithms in civil structural health monitoring: A systematic review[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2621-2643. doi: 10.1007/s11831-020-09471-9
|
| [6] |
MORAVVEJ M, EL-BADRY M. Reference-free vibration-based damage identification techniques for bridge structural health monitoring: A critical review and perspective[J]. Sensors, 2024, 24(3): 876. doi: 10.3390/s24030876
|
| [7] |
SUN L M, SHANG Z Q, XIA Y, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection[J]. Journal of Structural Engineering, 2020, 146(5): 04020073. doi: 10.1061/(ASCE)ST.1943-541X.0002535
|
| [8] |
ZHANG Y, YUEN K V. Review of artificial intelligence-ba-sed bridge damage detection[J]. Advances in Mechanical Engineering, 2022, 14(9): 16878132221122770. doi: 10.1177/16878132221122770
|
| [9] |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359.
|
| [10] |
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehen-sive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76.
|
| [11] |
WANG J D, LAN C L, LIU C, et al. Generalizing to unseen domains: A survey on domain generalization[J]. IEEE Tran-sactions on Knowledge and Data Engineering, 2023, 35(8): 8052-8072.
|
| [12] |
ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdo-main adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713-1722. doi: 10.1109/TNNLS.2020.2988928
|
| [13] |
GUO L, LEI Y G, XING S B, et al. Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Tran-sactions on Industrial Electronics, 2019, 66(9): 7316-7325. doi: 10.1109/TIE.2018.2877090
|
| [14] |
GARDNER P, LIU X, WORDEN K. On the application of domain adaptation in structural health monitoring[J]. Mecha-nical Systems and Signal Processing, 2020, 138: 106550. doi: 10.1016/j.ymssp.2019.106550
|
| [15] |
HAN T, LIU C, YANG W G, et al. Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application[J]. ISA Tran-sactions, 2020, 97: 269-281. doi: 10.1016/j.isatra.2019.08.012
|
| [16] |
VAMVOUDAKIS-STEFANOU K, SAKELLARIOU J, FASSOIS S. On the use of unsupervised response-only vibration-based damage detection methods for a population of composite structures[C]//EWSHM. Proceedings of the 8th European Workshop on Structural Health Monitoring. Berlin: EWSHM, 2016: 2822-2831.
|
| [17] |
VAMVOUDAKIS-STEFANOU K J, FASSOIS S D. Vibra-tion-based damage detection for a population of nominally identical structures via Random Coefficient Gaussian Mixture AR model based methodology[J]. Procedia Engineering, 2017, 199: 1888-1893. doi: 10.1016/j.proeng.2017.09.123
|
| [18] |
VAMVOUDAKIS-STEFANOU K J, SAKELLARIOU J S, FASSOIS S D. Vibration-based damage detection for a popu-lation of nominally identical structures: Unsupervised multiple model(MM) statistical time series type methods[J]. Mechanical Systems and Signal Processing, 2018, 111: 149-171. doi: 10.1016/j.ymssp.2018.03.054
|
| [19] |
BULL L A, GARDNER P A, GOSLIGA J, et al. Founda-tions of population-based SHM, part I: Homogeneous popu-lations and forms[J]. Mechanical Systems and Signal Processing, 2021, 148: 107141. doi: 10.1016/j.ymssp.2020.107141
|
| [20] |
GOSLIGA J, GARDNER P A, BULL L A, et al. Founda-tions of population-based SHM, part Ⅱ: Heterogeneous populations-graphs, networks, and communities[J]. Mechanical Systems and Signal Processing, 2021, 148: 107144. doi: 10.1016/j.ymssp.2020.107144
|
| [21] |
GARDNER P, BULL L A, GOSLIGA J, et al. Foundations of population-based SHM, part Ⅲ: Heterogeneous popula-tions-mapping and transfer[J]. Mechanical Systems and Signal Processing, 2021, 149: 107142. doi: 10.1016/j.ymssp.2020.107142
|
| [22] |
WORDEN K, BULL L A, GARDNER P, et al. A brief intro-duction to recent developments in population-based structural health monitoring[J]. Frontiers in Built Environment, 2020, 6: 146. doi: 10.3389/fbuil.2020.00146
|
| [23] |
GUO Y, ZHANG J D, SUN B, et al. Adversarial deep transfer learning in fault diagnosis: Progress, challenges, and future prospects[J]. Sensors, 2023, 23(16): 7263. doi: 10.3390/s23167263
|
| [24] |
GARDNER P, BULL L A, GOSLIGA J, et al. A popula-tion-based SHM methodology for heterogeneous structures: Transferring damage localisation knowledge between different aircraft wings[J]. Mechanical Systems and Signal Processing, 2022, 172: 108918. doi: 10.1016/j.ymssp.2022.108918
|
| [25] |
TSIALIAMANIS G, MYLONAS C, CHATZI E, et al. Foun-dations of population-based SHM, part Ⅳ: The geometry of spaces of structures and their feature spaces[J]. Mechanical Systems and Signal Processing, 2021, 157: 107692. doi: 10.1016/j.ymssp.2021.107692
|
| [26] |
BULL L A, GARDNER P A, GOSLIGA J, et al. Towards population-based structural health monitoring, part Ⅰ: Homogeneous populations and forms[M]. Berlin: Springer, 2021.
|
| [27] |
GARDNER P, BULL L A, GOSLIGA J, et al. Towards popu-lation-based structural health monitoring, part Ⅳ: Hetero-geneous populations, transfer and mapping[M]. Berlin: Springer, 2021.
|
| [28] |
YAO S Y, KANG Q, ZHOU M C, et al. A survey of transfer learning for machinery diagnostics and prognostics[J]. Arti-ficial Intelligence Review, 2023, 56(4): 2871-2922. doi: 10.1007/s10462-022-10230-4
|
| [29] |
WICKRAMARACHCHI C T, POOLE J, CROSS E J, et al. On aspects of geometry in SHM and population-based SHM[M]. Berlin: Springer, 2022.
|
| [30] |
WANG Z R, DAI Z H, PÓCZOS B, et al. Characterizing and avoiding negative transfer[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2019: 11285-11294.
|
| [31] |
HUGHES A J, POOLE J, DERVILIS N, et al. A decision framework for selecting information-transfer strategies in population-based SHM[J/OL]. arXiv, 2023,
|
| [32] |
BUNCE A, HESTER D, WORDEN K, et al. PBSHM-gui-dance for ensuring quality when creating an IE model for a bridge[C]//CUNHA Á, CAETANO E. Proceedings of the 10th International Conference on Structural Health Moni-toring of Intelligent Infrastructure. Porto: ISHMⅡ, 2021: 1789-1795.
|
| [33] |
GOSLIGA J, GARDNER P, BULL L A, et al. Towards popu-lation-based structural health monitoring, part Ⅱ: Hetero-geneous populations and structures as graphs[M]. Berlin: Springer, 2021.
|
| [34] |
GOSLIGA J, GARDNER P, BULL L A, et al. Towards popu-lation-based structural health monitoring, part Ⅲ: Graphs, networks and communities[M]. Berlin: Springer, 2021.
|
| [35] |
DELO G, BUNCE A, CROSS E J, et al. When is a bridge not an aeroplane? Part Ⅱ: A population of real structures[C]//Springer. European Workshop on Structural Health Moni-toring. Berlin: Springer, 2022: 965-974.
|
| [36] |
BRENNAN D S, GOSLIGA J, GARDNER P, et al. On the application of population-based structural health monitoring in aerospace engineering[J]. Frontiers in Robotics and AI, 2022, 9: 840058. doi: 10.3389/frobt.2022.840058
|
| [37] |
GOSLIGA J, HESTER D, WORDEN K, et al. On popula-tion-based structural health monitoring for bridges[J]. Mechanical Systems and Signal Processing, 2022, 173: 108919. doi: 10.1016/j.ymssp.2022.108919
|
| [38] |
POOLE J, GARDNER P, HUGHES A J, et al. Physics-informed transfer learning in PBSHM: A case study on experimental helicopter blades[C]//FARHANGDOUST S, GUEMES A, CHANG F K. Proceedings of the 14th Inter-national Workshop on Structural Health Monitoring. Lanca-ster: DEStech Publications, Inc., 2023: 236-267.
|
| [39] |
POOLE J, GARDNER P, DERVILIS N, et al. Towards physics-based metrics for transfer learning in dynamics[C]//MADARSHAHIAN R, HEMEZ F. Conference Proceedings of the Society for Experimental Mechanics Series. Berlin: Springer, 2023: 73-82.
|
| [40] |
GIGLIONI V, POOLE J, VENANZI I, et al. A domain adapta-tion approach to damage classification with an application to bridge monitoring[J]. Mechanical Systems and Signal Proce-ssing, 2024, 209: 111135. doi: 10.1016/j.ymssp.2024.111135
|
| [41] |
WICKRAMARACHCHI C T, LEAHY W, WORDEN K, et al. On metrics assessing the information content of datasets for population-based structural health monitoring[C]//RIZZO P, MILAZZO A. European Workshop on Structural Health Monitoring. Berlin: Springer, 2021: 494-504.
|
| [42] |
WICKRAMARACHCHI C T, MAGUIRE E, CROSS E J, et al. Measuring data similarity in population-based struc-tural health monitoring using distance metrics[J]. Structural Health Monitoring, 2024, 23(4): 2609-2635. doi: 10.1177/14759217231207526
|
| [43] |
BRENNAN D S, ROGERS T J, CROSS E J, et al. Calcu-lating structure similarity via a graph neural network in population-based structural health monitoring: Part Ⅱ[C]//NOH H Y, WHELAN M, HARVEY P S. Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics 2023. Berlin: Springer, 2023: 151-158.
|
| [44] |
TSIALIAMANIS G, MYLONAS C, CHATZI E N, et al. On an application of graph neural networks in population-based SHM[C]//MADARSHAHIAN R, HEMEZ F. Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021. Berlin: Springer, 2021: 47-63.
|
| [45] |
DELO G, SURACE C, WORDEN K, et al. On the influence of structural attributes for assessing similarity in popula-tion-based structural health monitoring[C]//FARHANGDOUST S, GUEMES A, CHANG F K. Proceedings of the 14th International Workshop on Structural Health Monitoring. Lancaster: DEStech Publications, Inc., 2023: 1553-1562.
|
| [46] |
OZDAGLI A, KOUTSOUKOS X. Domain adaptation for structural fault detection under model uncertainty[J]. International Journal of Prognostics and Health Management, 2021, 12(2): 29-48.
|
| [47] |
BULL L, ROGERS T, DERVILIS N, et al. A Gaussian process form for population-based structural health monitoring[C]//WAHAB M A. Proceedings of the 13th International Confe-rence on Damage Assessment of Structures. Berlin: Spring-er, 2019: 47-63.
|
| [48] |
LULECI F, CATBAS F N. Structural state translation: Condition transfer between civil structures using domain-generalization for structural health monitoring[J/OL]. arXiv, 2022,
|
| [49] |
DARDENO T A, BULL L A, DERVILIS N, et al. A gene-ralised form for a homogeneous population of structures using an overlapping mixture of Gaussian processes[J/OL]. arXiv, 2022,
|
| [50] |
DARDENO T A, BULL L A, MILLS R S, et al. Modelling variability in vibration-based PBSHM via a generalised population form[J]. Journal of Sound and Vibration, 2022, 538: 117227. doi: 10.1016/j.jsv.2022.117227
|
| [51] |
DA SILVA S, FIGUEIREDO E, MOLDOVAN I. Damage detection approach for bridges under temperature effects using Gaussian process regression trained with hybrid data[J]. Journal of Bridge Engineering, 2022, 27(11): 04022107. doi: 10.1061/(ASCE)BE.1943-5592.0001949
|
| [52] |
BUCKLEY T, PAKRASHI V, GHOSH B. A dynamic har-monic regression approach for bridge structural health moni-toring[J]. Structural Health Monitoring, 2021, 20(6): 3150-3181. doi: 10.1177/1475921720981735
|
| [53] |
LIN W J, WORDEN K, MAGUIRE A E, et al. A mapping method for anomaly detection in a localized population of structures[J]. Data-centric Engineering, 2022, 3: e25. doi: 10.1017/dce.2022.25
|
| [54] |
LIN W, WORDEN K, EOGHAN MAGUIRE A, et al. Towards population-based structural health monitoring, Part Ⅶ: EOV Fields-Environmental Mapping[C]//DILWORTH B, MAINS M. Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020. Berlin: Springer, 2021: 297-304.
|
| [55] |
BULL L A, DI FRANCESCO D, DHADA M, et al. Hierar-chical Bayesian modeling for knowledge transfer across engineering fleets via multitask learning[J]. Computer-aided Civil and Infrastructure Engineering, 2023, 38(7): 821-848. doi: 10.1111/mice.12901
|
| [56] |
DA SILVA S, YANO M O, GONSALEZ-BUENO C G. Transfer component analysis for compensation of temperature effects on the impedance-based structural health monitoring[J]. Journal of Nondestructive Evaluation, 2021, 40(3): 64. doi: 10.1007/s10921-021-00794-6
|
| [57] |
GARDNER P, BULL L A, DERVILIS N, et al. Overcom-ing the problem of repair in structural health monitoring: Metric-informed transfer learning[J]. Journal of Sound and Vibration, 2021, 510: 116245. doi: 10.1016/j.jsv.2021.116245
|
| [58] |
LIN Q G, CI T Y, WANG L B, et al. Transfer learning for improving seismic building damage assessment[J]. Remote Sensing, 2022, 14(1): 201. doi: 10.3390/rs14010201
|
| [59] |
PAN Q Y, BAO Y Q, LI H. Transfer learning-based data anomaly detection for structural health monitoring[J]. Struc-tural Health Monitoring, 2023, 22(5): 3077-3091. doi: 10.1177/14759217221142174
|
| [60] |
RITTO T G, WORDEN K, WAGG D J, et al. A transfer learning-based digital twin for detecting localised torsional friction in deviated wells[J]. Mechanical Systems and Signal Processing, 2022, 173: 109000. doi: 10.1016/j.ymssp.2022.109000
|
| [61] |
ZHOU X, SBARUFATTI C, GIGLIO M, et al. A fuzzy-set-based joint distribution adaptation method for regression and its application to online damage quantification for structural digital twin[J]. Mechanical Systems and Signal Processing, 2023, 191: 110164. doi: 10.1016/j.ymssp.2023.110164
|
| [62] |
HU Q, SI X S, QIN A S, et al. Balanced adaptation regu-larization based transfer learning for unsupervised cross-domain fault diagnosis[J]. IEEE Sensors Journal, 2022, 22(12): 12139-12151. doi: 10.1109/JSEN.2022.3174396
|
| [63] |
ZHANG Z W, CHEN H H, LI S M, et al. A novel geodesic flow kernel based domain adaptation approach for intelligent fault diagnosis under varying working condition[J]. Neuro-computing, 2020, 376: 54-64.
|
| [64] |
POOLE J, GARDNER P, DERVILIS N, et al. On statistic alignment for domain adaptation in structural health moni-toring[J]. Structural Health Monitoring, 2023, 22(3): 1581-1600. doi: 10.1177/14759217221110441
|
| [65] |
OMORI YANO M, FIGUEIREDO E, DA SILVA S, et al. Foundations and applicability of transfer learning for structural health monitoring of bridges[J]. Mechanical Sys-tems and Signal Processing, 2023, 204: 110766. doi: 10.1016/j.ymssp.2023.110766
|
| [66] |
FIGUEIREDO E, OMORI YANO M, DA SILVA S, et al. Transfer learning to enhance the damage detection perfor-mance in bridges when using numerical models[J]. Journal of Bridge Engineering, 2023, 28: 04022134. doi: 10.1061/(ASCE)BE.1943-5592.0001979
|
| [67] |
ARDANI S, EFTEKHAR AZAM S, LINZELL D G. Bridge health monitoring using proper orthogonal decomposition and transfer learning[J]. Applied Sciences, 2023, 13(3): 1935. doi: 10.3390/app13031935
|
| [68] |
GARDNER P, BULL L A, DERVILIS N, et al. Domain-adapted Gaussian mixture models for population-based structural health monitoring[J]. Journal of Civil Structural Health Monitoring, 2022, 12(6): 1343-1353. doi: 10.1007/s13349-022-00565-5
|
| [69] |
BULL L A, GARDNER P A, DERVILIS N, et al. Trans-ferring damage detectors between tailplane experiments[C]//MADARSHAHIAN R, HEMEZ F. Conference Proceedings of the Society for Experimental Mechanics Series. Berlin: Springer, 2021: 199-211.
|
| [70] |
GARDNER P A, BULL L A, DERVILIS N, et al. On the application of heterogeneous transfer learning to population-based structural health monitoring[C]//MADARSHAHIAN R, HEMEZ F. Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021. Berlin: Springer, 2021: 87-98.
|
| [71] |
GARDNER P, BULL L A, DERVILIS N, et al. On the application of kernelised Bayesian transfer learning to popu-lation-based structural health monitoring[J]. Mechanical Sys-tems and Signal Processing, 2022, 167: 108519. doi: 10.1016/j.ymssp.2021.108519
|
| [72] |
WICKRAMARACHCHI C T, GARDNER P, POOLE J, et al. Damage localisation using disparate damage states via domain adaptation[J]. Data-centric Engineering, 2024, 5: e3. doi: 10.1017/dce.2023.29
|
| [73] |
BULL L A, GARDNER P A, DERVILIS N, et al. On the transfer of damage detectors between structures: An expe-rimental case study[J]. Journal of Sound and Vibration, 2021, 501: 116072. doi: 10.1016/j.jsv.2021.116072
|
| [74] |
BULL L A, GARDNER P, DERVILIS N, et al. Automated Feature Extraction for Damage Detection: A Pseudo-fault Framework for Population-based SHM[C]//CUNHA A, CAETANO E. Proceedings of the 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure(SHMⅡ-10). Belfast: Queen's University Belfast, 2021: 655-662.
|
| [75] |
OMORI YANO M, DA SILVA S, FIGUEIREDO E, et al. Damage quantification using transfer component analysis com-bined with Gaussian process regression[J]. Structural Health Monitoring, 2023, 22(2): 1290-1307. doi: 10.1177/14759217221094500
|
| [76] |
GIGLIONI V, POOLE J, VENANZI I, et al. On the use of domain adaptation techniques for bridge damage detection in a changing environment[J]. CE/Papers, 2023, 6(5): 975-980. doi: 10.1002/cepa.2143
|
| [77] |
LI W H, HUANG R Y, LI J P, et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges[J]. Mecha-nical Systems and Signal Processing, 2022, 167: 108487. doi: 10.1016/j.ymssp.2021.108487
|
| [78] |
YU F C, XIU X C, LI Y H. A survey on deep transfer learning and beyond[J]. Mathematics, 2022, 10(19): 3619. doi: 10.3390/math10193619
|
| [79] |
TENG S, CHEN X D, CHEN G F, et al. Structural damage detection based on transfer learning strategy using digital twins of bridges[J]. Mechanical Systems and Signal Processing, 2023, 191: 110160. doi: 10.1016/j.ymssp.2023.110160
|
| [80] |
CAO N, JIANG Z N, GAO J J, et al. Bearing state recog-nition method based on transfer learning under different working conditions[J]. Sensors, 2020, 20(1): 234. doi: 10.1109/JSEN.2019.2942639
|
| [81] |
ZHANG R, TAO H Y, WU L F, et al. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J]. IEEE Access, 2017, 5: 14347-14357. doi: 10.1109/ACCESS.2017.2720965
|
| [82] |
WEN L, GAO L, LI X Y. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. doi: 10.1109/TSMC.2017.2754287
|
| [83] |
LULECI F, CATBAS F N, AVCI O. Generative adversarial networks for labeled acceleration data augmentation for structural damage detection[J]. Journal of Civil Structural Health Monitoring, 2023, 13(1): 181-198. doi: 10.1007/s13349-022-00627-8
|
| [84] |
LI X, ZHANG W, MA H, et al. Domain generalization in rotating machinery fault diagnostics using deep neural networks[J]. Neurocomputing, 2020, 403: 409-420. doi: 10.1016/j.neucom.2020.05.014
|
| [85] |
ZHANG B, LI W, LI X L, et al. Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks[J]. IEEE Access, 2018, 6: 66367-66384. doi: 10.1109/ACCESS.2018.2878491
|
| [86] |
TENG S, CHEN X D, CHEN G F, et al. Structural damage detection based on convolutional neural networks and population of bridges[J]. Measurement, 2022, 202: 111747. doi: 10.1016/j.measurement.2022.111747
|
| [87] |
CHENG M H, DANG C, FRANGOPOL D M, et al. Trans-fer prior knowledge from surrogate modelling: A meta-learn-ing approach[J]. Computers & Structures, 2022, 260: 106719.
|
| [88] |
TSIALIAMANIS G, DERVILIS N, WAGG D J, et al. A Meta-learning approach to population-based modelling of structures[J/OL]. arXiv, 2023,
|
| [89] |
TSIALIAMANIS G, SBARUFATTI C, DERVILIS N, et al. On a meta-learning population-based approach to damage prognosis[J]. Mechanical Systems and Signal Processing, 2024, 209: 111119. doi: 10.1016/j.ymssp.2024.111119
|
| [90] |
SAIDA T, NISHIO M. Transfer learning Gaussian process regression surrogate model with explainability for structural reliability analysis under variation in uncertainties[J]. Com-puters & Structures, 2023, 281: 107014.
|
| [91] |
ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425
|
| [92] |
TIAN K, LI Z C, ZHANG J X, et al. Transfer learning based variable-fidelity surrogate model for shell buckling prediction[J]. Composite Structures, 2021, 273: 114285. doi: 10.1016/j.compstruct.2021.114285
|
| [93] |
LI X, ZHANG W, DING Q, et al. Multi-layer domain adaptation method for rolling bearing fault diagnosis[J]. Signal Processing, 2019, 157: 180-197. doi: 10.1016/j.sigpro.2018.12.005
|
| [94] |
YU K, HAN H Z, FU Q, et al. Symmetric co-training based unsupervised domain adaptation approach for intelligent fault diagnosis of rolling bearing[J]. Measurement Science and Technology, 2020, 31(11): 115008. doi: 10.1088/1361-6501/ab9841
|
| [95] |
XIAO H T, DONG L M, WANG W J, et al. Distribution sub-domain adaptation deep transfer learning method for bridge structure damage diagnosis using unlabeled data[J]. IEEE Sensors Journal, 2022, 22(15): 15258-15272. doi: 10.1109/JSEN.2022.3186885
|
| [96] |
XU S S, NOH H Y. PhyMDAN: Physics-informed knowledge transfer between buildings for seismic damage diagnosis through adversarial learning[J]. Mechanical Systems and Sig-nal Processing, 2021, 151: 107374. doi: 10.1016/j.ymssp.2020.107374
|
| [97] |
TRONCI E M, BEIGI H, BETTI R, et al. A damage assess-ment methodology for structural systems using transfer learning from the audio domain[J]. Mechanical Systems and Signal Processing, 2023, 195: 110286. doi: 10.1016/j.ymssp.2023.110286
|
| [98] |
XIAO H T, OGAI H, WANG W J. Multi-channel domain adaptation deep transfer learning for bridge structure damage diagnosis[J]. IEEE Transactions on Electrical and Electronic Engineering, 2022, 17(11): 1637-1647. doi: 10.1002/tee.23671
|
| [99] |
XIAO H T, OGAI H, WANG W J. A new deep transfer learning method for intelligent bridge damage diagnosis based on Muti-channel sub-domain adaptation[J]. Structure and Infrastructure Engineering, 2024, 20(12): 1994-2009. doi: 10.1080/15732479.2023.2167214
|
| [100] |
LIN Y Z, NIE Z H, MA H W. Dynamics-based cross-domain structural damage detection through deep transfer learning[J]. Computer-aided Civil and Infrastructure Engineering, 2022, 37(1): 24-54. doi: 10.1111/mice.12692
|
| [101] |
LULECI F, CATBAS F N, AVCI O. A literature review: Generative adversarial networks for civil structural health monitoring[J]. Frontiers in Built Environment, 2022, 8: 1027379. doi: 10.3389/fbuil.2022.1027379
|
| [102] |
WANG X Y, XIA Y. Knowledge transfer for structural dam-age detection through re-weighted adversarial domain adap-tation[J]. Mechanical Systems and Signal Processing, 2022, 172: 108991. doi: 10.1016/j.ymssp.2022.108991
|
| [103] |
LULECI F, NECATI CATBAS F. Condition transfer between prestressed bridges using structural state translation for structural health monitoring[J]. AI in Civil Engineering, 2023, 2(1): 7. doi: 10.1007/s43503-023-00016-0
|
| [104] |
ZHANG Z M, SUN C, GUO B B. Transfer-learning guided Bayesian model updating for damage identification considering modeling uncertainty[J]. Mechanical Systems and Signal Pro-cessing, 2022, 166: 108426. doi: 10.1016/j.ymssp.2021.108426
|
| [105] |
LULECI F, CATBAS F N, AVCI O. CycleGAN for Unda-maged-to-damaged Domain Translation for Structural Health Monitoring and Damage Detection[J/OL]. arXiv, 2022,
|
| [106] |
LULECI F, AVCI O, CATBAS F N. Improved undamaged-to-damaged acceleration response translation for Structural Health Monitoring[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106146. doi: 10.1016/j.engappai.2023.106146
|
| [107] |
REULAND Y, GARCIA-RAMONDA L, MARTAKIS P, et al. A full-scale case study of vibration-based structural health monitoring of bridges: Prospects and open challenges[J]. CE/Papers, 2023, 6(5): 329-336. doi: 10.1002/cepa.2001
|
| [108] |
BROWNJOHN J M W, KRIPAKARAN P, HARVEY B, et al. Structural health monitoring of short to medium span bridges in the United Kingdom[J]. Structural Monitoring and Maintenance, 2016, 3(3): 259-276. doi: 10.12989/smm.2016.3.3.259
|
| [109] |
MIYAMOTO A, KIVILUOMA R, YABE A. Frontier of continuous structural health monitoring system for short & medium span bridges and condition assessment[J]. Frontiers of Structural and Civil Engineering, 2019, 13(3): 569-604. doi: 10.1007/s11709-018-0498-y
|
| [110] |
ENTEZAMI A, SARMADI H, BEHKAMAL B, et al. Big data analytics and structural health monitoring: A statistical pattern recognition-based approach[J]. Sensors, 2020, 20(8): 2328. doi: 10.3390/s20082328
|
| [111] |
WU R T, JAHANSHAHI M R. Data fusion approaches for structural health monitoring and system identification: Past, present, and future[J]. Structural Health Monitoring, 2020, 19(2): 552-586. doi: 10.1177/1475921718798769
|
| [112] |
BUCKLEY T, GHOSH B, PAKRASHI V. A feature extrac-tion & selection benchmark for structural health monitoring[J]. Structural Health Monitoring, 2023, 22(3): 2082-2127. doi: 10.1177/14759217221111141
|
| [113] |
AVCI O, ABDELJABER O, KIRANYAZ S, et al. A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications[J]. Mechanical Systems and Signal Processing, 2021, 147: 107077. doi: 10.1016/j.ymssp.2020.107077
|
| [114] |
WILSON G, COOK D J. A survey of unsupervised deep do-main adaptation[J]. ACM Transactions on Intelligent Sys-tems and Technology, 2020, 11(5): 1-46.
|
| [115] |
TOH G, PARK J. Review of vibration-based structural heal-th monitoring using deep learning[J]. Applied Sciences, 2020, 10(5): 1680. doi: 10.3390/app10051680
|
| [116] |
MALEKLOO A, OZER E, ALHAMAYDEH M, et al. Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source high-lights[J]. Structural Health Monitoring, 2022, 21(4): 1906-1955. doi: 10.1177/14759217211036880
|
| [117] |
BULL L A, ROGERS T J, WICKRAMARACHCHI C, et al. Probabilistic active learning: an online framework for struc-tural health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 134: 106294. doi: 10.1016/j.ymssp.2019.106294
|
| [118] |
BULL L A, WORDEN K, DERVILIS N. Towards semi-su-pervised and probabilistic classification in structural health monitoring[J]. Mechanical Systems and Signal Processing, 2020, 140: 106653. doi: 10.1016/j.ymssp.2020.106653
|
| [119] |
DAY O, KHOSHGOFTAAR T M. A survey on heterogeneous transfer learning[J]. Journal of Big Data, 2017, 4(1): 29. doi: 10.1186/s40537-017-0089-0
|
| [120] |
WANG T Y, HUAN J, ZHU M. Instance-based deep trans-fer learning[C]//IEEE. 2019 IEEE Winter Conference on Applications of Computer Vision(WACV). New York: IEEE, 2019: 367-375.
|
| [121] |
REN H, LIU W Y, SHAN M C, et al. A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning[J]. Measurement, 2019, 148: 106906. doi: 10.1016/j.measurement.2019.106906
|
| [122] |
SHAN X X, LU Y, LI Q L, et al. Model-based transfer learning and sparse coding for partial face recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4347-4356. doi: 10.1109/TCSVT.2020.3047140
|
| [123] |
NIU S T, LIU Y X, WANG J, et al. A decade survey of transfer learning(2010-2020)[J]. IEEE Transactions on Artificial Intelligence, 2020, 1(2): 151-166. doi: 10.1109/TAI.2021.3054609
|
| [124] |
RIZVI S H M, ABBAS M. From data to insight, enhancing structural health monitoring using physics-informed machine learning and advanced data collection methods[J]. Engi-neering Research Express, 2023, 5(3): 032003. doi: 10.1088/2631-8695/acefae
|
| [125] |
ZHANG M T, GUO T, ZHANG G D, et al. Physics-infor-med deep learning for structuralvibration identification and its application on a benchmark structure[J]. Philosophical Tran-sactions Series A: Mathematical, Physical, and Engineering Sciences, 2024, 382(2264): 20220400.
|
| [126] |
DI LORENZO D, CHAMPANEY V, MARZIN J Y, et al. Physics informed and data-based augmented learning in structural health diagnosis[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 414: 116186. doi: 10.1016/j.cma.2023.116186
|
| [127] |
ZINNO R, HAGHSHENAS S S, GUIDO G, et al. Artificial intelligence and structural health monitoring of bridges: A review of the state-of-the-art[J]. IEEE Access, 2022, 10: 88058-88078. doi: 10.1109/ACCESS.2022.3199443
|
| [128] |
WANG X P, ZHAO Q Z, XI R J, et al. Review of bridge structural health monitoring based on GNSS: From displa-cement monitoring to dynamic characteristic identification[J]. IEEE Access, 2021, 9: 80043-80065. doi: 10.1109/ACCESS.2021.3083749
|
| [129] |
MAES K, LOMBAERT G. Monitoring railway bridge KW51 before, during, and after retrofitting[J]. Journal of Bridge Engineering, 2021, 26(3): 04721001. doi: 10.1061/(ASCE)BE.1943-5592.0001668
|
| [130] |
REYNDERS E, ROECK G. Continuous vibration monitoring and progressive damage testing on the Z24 bridge[M]. Encyclopedia of Structural Health Monitoring. New York: Wiley, 2008.
|
| [131] |
MENGHINI A, LEANDER J, CASTIGLIONI C A. A local response function approach for the stress investigation of a centenarian steel railway bridge[J]. Engineering Structures, 2023, 286: 116116. doi: 10.1016/j.engstruct.2023.116116
|
| [132] |
KVÅLE K A, FENERCI A, PETERSEN Ø W, et al. Data set from long-term wave, wind, and response monitoring of the Bergsøysund Bridge[J]. Journal of Structural Engineering, 2023, 149(9): 04723002. doi: 10.1061/JSENDH.STENG-12095
|
| [133] |
FENERCI A, KVÅLE K A, PETERSEN Ø W, et al. Data set from long-term wind and acceleration monitoring of the hardanger bridge[J]. Journal of Structural Engineering, 2021, 147(5): 04721003. doi: 10.1061/(ASCE)ST.1943-541X.0002997
|
| [134] |
SVENDSEN B T, FRØSETH G T, ØISETH O, et al. A data-based structural health monitoring approach for damage detection in steel bridges using experimental data[J]. Journal of Civil Structural Health Monitoring, 2022, 12(1): 101-115. doi: 10.1007/s13349-021-00530-8
|
| [135] |
KODY A, LI X, MOAVENI B. Identification of physically simulated damage on a footbridge based on ambient vibration data[C]//ASCE. Structures Congress 2013. New York: ASCE, 2013: 352-362.
|
| [136] |
KATSIDIMAS I, KOTZAKOLIOS T, NIKOLETSEAS S, et al. Impact events for structural health monitoring of a plastic thin plate: Dataset[C]//ACM. Proceedings of the 20th ACM Conference on Embedded Networked Sensor Sys-tems. New York: ACM, 2022: 1020-1025.
|