LIANG Xin-rong, LIU Zhi-yong, MAO Zong-yuan. Elman neural network model of freeway dynamic traffic flow[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 92-96.
Citation: LIANG Xin-rong, LIU Zhi-yong, MAO Zong-yuan. Elman neural network model of freeway dynamic traffic flow[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 92-96.

Elman neural network model of freeway dynamic traffic flow

More Information
  • Author Bio:

    Liang Xin-rong(1964-), male, PhD, associate professor, 86-750-3299874, xrlian955@126.com

  • Received Date: 2005-12-06
  • Publish Date: 2006-09-25
  • In order to improve the accuracy of freeway traffic flow modeling, the discrete mathematical model of freeway dynamic traffic flow was analyzed, and a traffic flow model of recurrent neural network was built based on the principle of Elman network. The node numbers of the input layer, context layer, hidden layer and output layer of the recurrent network were selected as 8, 30, 30 and 2 respectively. Levenberg-Marquardt algorithm was used to train the recurrent network, and a freeway with five segments was simulated. Simulation result shows that the average relative error and the maximum relative error for the recurrent network are 8. 683 7 × 10-5 and 4. 237 1 × 10-4 respectively, compared with the BP and RBF neural network, the Elman recurrent network can approach the mathematical model of freeway traffic flow more accurately, can better describe the basic properties of traffic flow, and by means of on-line learning from the data measured by sensors on the freeway, the Elman recurrent network can adapt to the change of traffic status. 1 tab, 7 figs, 10 refs.

     

  • loading
  • [1]
    吴正. 高速交通中堵塞形成阶段的交通流模型[J]. 交通运输工程学报, 2003, 3(2): 61-64. http://transport.chd.edu.cn/article/id/200302014

    Wu Zheng. Traffic flow modeling for jam developing procedure on expressway[J]. Journal of Traffic and Transportation Engineering, 2003, 3(2): 61-64. (in Chinese) http://transport.chd.edu.cn/article/id/200302014
    [2]
    宫晓燕, 汤淑明, 王知学, 等. 高速公路交通流建模综述[J]. 交通运输工程学报, 2002, 2(1): 74-79. http://transport.chd.edu.cn/article/id/200201016

    Gong Xiao-yan, Tang Shu-ming, Wang Zhi-xue, et al. Survey on freeway traffic flow modeling[J]. Journal of Trafflc and Transponation Engineering, 2002, 2(1): 74-79. (in Chinese) http://transport.chd.edu.cn/article/id/200201016
    [3]
    刘勇, 严宝杰, 陈红. 基于热力学熵的交通流模型[J]. 长安大学学报: 自然科学版, 2005, 25(4): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200504016.htm

    Liu Yong, Yan Ba-jie, Chen Hong. M0del of traffic now based on themodymlTlic entropy[J]. JournaI of Chang'an University: Natural Science Edition, 2005, 25(4): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200504016.htm
    [4]
    撒元功, 胡郁葱, 徐建闽. 高速公路动态交通流的神经网络模型[J]. 华南理工大学学报: 自然科学版, 2002, 30(8): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200208021.htm

    Sa Yuan-gong, Hu Yu-cong, Xu Jjan-min. The neural nerwork model of freeway dynamic traffic flow[J]. Journal of South China University of Technology: Natural Science Edition, 2002, 30(8): 91-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200208021.htm
    [5]
    罗赞文, 吴志坚, 韩曾晋. RBF网络在交通流模型辨识中的应用[J]. 清华大学学报: 自然科学版, 2001, 41(9): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200109027.htm

    Luo Zan-wen, Wu Zhi-jian, Han Zeng-jin. Radial basis function neural network for a traffic flow model[J]. Journal of Tsinghua University: Natural Science Edition, 2001, 41(9): 106-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200109027.htm
    [6]
    史其信, 郑为中. 道路网短期交通流预测方法比较[J]. 交通运输工程学报, 2004, 4(4): 68-71. http://transport.chd.edu.cn/article/id/200404017

    Shi Qi-xin, Zheng Wei-zhong. Short-term traffic flow prediction methods comparison of road networks[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 68-71. (in Chinese) http://transport.chd.edu.cn/article/id/200404017
    [7]
    杨立才, 贾磊, 赵建玉, 等. 基于粗集理论的交通控制系统研究[J]. 中国公路学报, 2005, 18(2): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL20050200F.htm

    Yang Li-cai, Jia Lei, Zhao Jian-yu, et al. Study of traffic control systems based on rough sets theory[J]. China Journal of Highway and Transport, 2005, 18(2): 79-83. (in C"nese https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL20050200F.htm
    [8]
    Kotsialos A, Papageorgiou M. The importance of traffic flow modeling for motorway trafflc control[J]. Networks and spatial Economics, 2001, 76(1): 179-203.
    [9]
    AbdalIa M I. Digital detection techniques via E1man neural network[J]. Journal of Engineering and Applied Science, 2002, 49(6): 1 197-1 208.
    [10]
    闻新, 周露, 李翔, 等. Matlab神经网络仿真与应用[M]. 北京: 科学出版杜, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (302) PDF downloads(307) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return