ZHANG Jing, JU Yong-feng, CHEN Li. Detection method of traffic state for urban traffic network based on wavelet analysis[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 114-120. doi: 10.19818/j.cnki.1671-1637.2010.05.020
Citation: ZHANG Jing, JU Yong-feng, CHEN Li. Detection method of traffic state for urban traffic network based on wavelet analysis[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 114-120. doi: 10.19818/j.cnki.1671-1637.2010.05.020

Detection method of traffic state for urban traffic network based on wavelet analysis

doi: 10.19818/j.cnki.1671-1637.2010.05.020
More Information
  • Author Bio:

    ZHANG Jing(1972-), female, lecturer, doctoral student, +86-29-82339626, jingzhang@chd.edu.cn

    JU Yong-feng(1962-), male, professor, PhD, +86-29-82334555, yfju@chd.edu.cn

  • Received Date: 2010-05-24
  • Publish Date: 2010-10-25
  • The import saturation degree of intersection and the average travel speed of road section were selected as the basic parameters of road network's state detection, the high time-frequency properties of wavelet packet transform was adopted, and the mutation and unusual conditions of the saturation and the speed were distinguished by using energy analysis method. In order to describe the change of traffic state, a coefficient was defined, a traffic state detection algorithm was designed by using wavelet analysis, and Bayesian Method was used to predict the traffic state. Simulation result shows that the mutation interval of energy distribution can be identified by using wavelet analysis, based on which the changing time interval of traffic state can be distinguished. While the maximal points of sampling data modulus are from 200 to 243, the energy change of the section node is intense, and the state changes from steadiness to unsteadiness. When the coefficient of traffic state is more than 0.300 h·km-1, a crowded state appears. The method with simple working principle and short time response to congestion is feasible because of its credible detection result.

     

  • loading
  • [1]
    GIESA S, EVERTS K. ARI AM: car-driver-radio-informa-tion on the basis of automatic incident detection[J]. Traffic Engineering and Control, 1987, 28(6): 344-348.
    [2]
    ABDULHAI B, RITCHIE S G. Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(5): 261-280. doi: 10.1016/S0968-090X(99)00022-4
    [3]
    FAISAL A. Incident detection: selection of appropriate tech-nologies and methodologies[J]. Road and Transport Research, 2002, 11(2): 50-56.
    [4]
    THAM Y K. Network design for simultaneous traffic flow requirements[J]. IEICE Transactions on Communications, 1997, E80-B(6): 930-938.
    [5]
    ADELI H, KARI MA. Fuzzy-wavelet RBFNN model for freeway incident detection[J]. Journal of Transportation Engineering, 2000, 126(6): 464-471. doi: 10.1061/(ASCE)0733-947X(2000)126:6(464)
    [6]
    XIONG Zi-xiang, RAMCHANDRAN K, ORCHARD M T. Wavelet packet image coding using space-frequency quantiza-tion[J]. IEEE Transactions on Image Processing, 1998, 7(6): 892-898. doi: 10.1109/83.679438
    [7]
    张敬磊, 王晓原. 交通流状态辨识小波算法研究[J]. 武汉理工大学学报: 交通科学与工程版, 2006, 30(5): 820-823. doi: 10.3963/j.issn.2095-3844.2006.05.022

    ZHANG Jing-lei, WANG Xiao-yuan. Study on traffic flow condition identification using wavelet method[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2006, 30(5): 820-823. (in Chinese) doi: 10.3963/j.issn.2095-3844.2006.05.022
    [8]
    庄斌, 杨晓光, 李克平. 道路交通拥挤事件判别准则与检测算法[J]. 中国公路学报, 2006, 19(3): 82-86. doi: 10.3321/j.issn:1001-7372.2006.03.015

    ZHUANG Bin, YANG Xiao-guang, LI Ke-ping. Criterion and detection algorithm for road traffic congestion incidents[J]. China Journal of Highway and Transport, 2006, 19(3): 82-86. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.03.015
    [9]
    林士敏, 田凤占, 陆玉昌. 贝叶斯网络的建造及其在数据采掘中的应用[J]. 清华大学学报: 自然科学版, 2001, 41(1): 49-52. doi: 10.3321/j.issn:1000-0054.2001.01.013

    LI N Shi-min, TI AN Feng-zhan, LU Yu-chang. Construction and applications in data mining of Bayesian networks[J]. Journal of Tsinghua University: Science and Technology, 2001, 41(1): 49-52. (in Chinese) doi: 10.3321/j.issn:1000-0054.2001.01.013
    [10]
    刘伟铭, 管丽萍, 尹湘源. 基于决策树的高速公路事件持续时间预测[J]. 中国公路学报, 2005, 18(1): 99-103. doi: 10.3321/j.issn:1001-7372.2005.01.020

    LI U Wei-ming, GUAN Li-ping, YI N Xiang-yuan. Prediction of freewayincident duration based on decision tree[J]. China Journal of Highway and Transport, 2005, 18(1): 99-103. (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.01.020
    [11]
    张和生, 张毅, 胡东成, 等. 区域交通状态分析的时空分层模型[J]. 清华大学学报: 自然科学版, 2007, 47(1): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200701041.htm

    ZHANG He-sheng, ZHANG Yi, HU Dong-cheng, et al. Spatial-temporal hierarchical model for area traffic state analysis[J]. Journal of Tsinghua University: Science and Technology, 2007, 47(1): 157-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200701041.htm
    [12]
    李晓丹, 刘好德, 杨晓光, 等. 城市道路网络交通状态时空演化量化分析[J]. 系统工程, 2008, 26(12): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200812014.htm

    LI Xiao-dan, LI U Hao-de, YANG Xiao-guang, et al. Quan-titative analysis of space-time evolution of traffic status for urban road network[J]. Systems Engineering, 2008, 26(12): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200812014.htm
    [13]
    郭艳玲, 吴义虎, 黄中祥. 基于小波分析和SOM网络的交通事件检测算法[J]. 系统工程, 2006, 24(10): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200610020.htm

    GUO Yan-ling, WU Yi-hu, HUANG Zhong-xiang. An algo-rithmfor traffic incidents detection based on wavelet analysis and SOMnetwork[J]. Systems Engineering, 2006, 24(10): 100-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200610020.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (789) PDF downloads(629) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return