Citation: | ZHAO Mei-yun, LIU Zheng-lin, ZHAO Xin-ze, GAO Wei, WANG Qi-feng. Wear characteristics of contact area among transmission conductor strands of electrified railway[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 121-126. |
[1] |
HOU Wei-liang, HE Huan, SUN Xu-long. Study on power supply scheme of contemporary electric railway[J]. Distribution and Utilization, 2012, 29 (2): 28-30, 58. (in Chinese). doi: 10.3969/j.issn.1006-6357.2012.02.006
|
[2] |
NA Guang-yu, WANG Jun. The power supply system of electrified railway and its impact on the power system[J]. Northeast Electric Power Technology, 2011 (11): 13-18. (in Chinese). doi: 10.3969/j.issn.1004-7913.2011.11.004
|
[3] | 图 6两种条件下接触区应力分布曲线Fig. 6 Stress distribution curves of contact area under two kinds of conditions WU Gang, ZHAO Xin-ze, ZHAO Chun-hua. Research progresses on friction and wear of overhead electrical conductors[J]. Lubrication Engineering, 2008, 33 (10): 103-106. (in Chinese). doi: 10.3969/j.issn.0254-0150.2008.10.032 |
[4] |
WANG Xu, CHEN Guo-hong, WANG Jia-qing, et al. Fretting fatigue fractographies of aluminum conductor steel reinforced overhead conductor[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (1): 194-200. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201201025.htm
|
[5] |
MEI Li-jia. Vibration-proof and hazard of conductor vibration for overhead line[J]. Jiangxi Electric Power, 2005, 29 (6): 30-31, 34. (in Chinese). doi: 10.3969/j.issn.1006-348X.2005.06.009
|
[6] |
AZEVEDO C R F, CESCON T. Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Parana River[J]. Engineering Failure Analysis, 2002, 9 (6): 645-664. doi: 10.1016/S1350-6307(02)00021-3
|
[7] |
AZEVEDO C R F, HENRIQUES A M D, FILHO A R P, et al. Fretting fatigue in overhead conductors: rig design and failure analysis of a grosbeak aluminium cable steel reinforced conductor[J]. Engineering Failure Analysis, 2009, 16 (1): 136-151. doi: 10.1016/j.engfailanal.2008.01.003
|
[8] |
CHEN Jian, HUANG Zhi-jie, LI Lu-ping, et al. Microanalysis on fretting wear surface of overhead electrical conductors[J]. Lubrication Engineering, 2004, 29 (6): 24-26. (in Chinese). doi: 10.3969/j.issn.0254-0150.2004.06.009
|
[9] |
CHEN Guo-hong, WANG Jia-qing, ZHANG Jian-kun, et al. Fretting wear behavior of overhead aluminum conductor steel reinforced conductor[J]. Lubrication Engineering, 2010, 35 (5): 55-59, 84. (in Chinese). doi: 10.3969/j.issn.0254-0150.2010.05.012
|
[10] |
LI Bo, LI Jie, CHEN Hao-bin, et al. Research on fretting wear of high-voltage transmission conductor[J]. Lubrication Engineering, 2009, 34 (2): 71-73, 81. (in Chinese). doi: 10.3969/j.issn.0254-0150.2009.02.022
|
[11] |
ZHAO Xin-ze, WANG Qi-feng, ZHOU Quan, et al. Fretting wear behavior of aluminum cable steel reinforced[J]. Lubrication Engineering, 2013, 38 (3): 32-35, 47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201303011.htm
|
[12] |
ZHAO Xin-ze, GAO Wei, ZHAO Mei-yun, et al. Wear characteristics of aluminum cable steel reinforced (ACSR) under dry and acidic conditions[J]. Tribology, 2011, 31 (6): 616-621. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201106018.htm
|
[13] |
ZHANG De-kun, GE Shi-rong. Research on the contact mechanisms in the process of fretting wear between steel wires[J]. Journal of Mechanical Strength, 2007, 29 (1): 148-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200701029.htm
|
[14] |
CRUZADO A, HARTELT M, WASCHE R. Fretting wear of thin steel wires part 1: influence of contact pressure[J]. Wear, 2010, 268 (11/12): 1409-1416.
|
[15] |
SHEN Yan, ZHANG De-kun, WANG Da-gang, et al. Effect of contact load on the fretting wear behavior of steel wire[J]. Tribology, 2010, 30 (4): 404-408. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201004015.htm
|
[16] |
TSAI C T, MALL S. Elasto-plastic finite element analysis of fretting stresses in pre-stressed strip in contact with cylindrical pad[J]. Finite Elements in Analysis and Design, 2000, 36 (2): 171-187.
|