PAN Deng, ZHENG Ying-ping. Dynamic control of train interval based on real-time calibration of safe headway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 112-118.
Citation: PAN Deng, ZHENG Ying-ping. Dynamic control of train interval based on real-time calibration of safe headway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 112-118.

Dynamic control of train interval based on real-time calibration of safe headway

More Information
  • Author Bio:

    PANDeng(1969-), male, lecturer, PhD, +86-21-69589241, pandengreal@sina.com

  • Received Date: 2013-09-07
  • Publish Date: 2014-02-25
  • The relationship between train interval and its following behavior was analyzed. When the steady-following state of high-speed train was broken, the dynamic control of train interval was described by using the formal modeling tool of Petri nets. For the CTCS-4 level train control system, a fitting function of the minimum safe headway changing with the current velocity of following train within the full-range velocity field was constructed by using numerical analysis method, and the constructed fitting function was used for the behavioral quality evaluation of following train. The dynamic control model of train interval was established based on the evaluation of train following behavior, and the model was simulated and verified. Simulation result indicates that during the period of train following system operating from a safe and efficient steady-following state with a velocity of 200 km·h-1 and a train interval of 5 849.18 mto another steady-following state with a velocity of 380 km·h-1, the dynamic control of train interval is accomplished well by the behavioral adjustment of following train, and the train interval is only 358.00 mlonger than the safe headway when a new steady-following state is realized at the velocity of 380 km·h-1, which means that a new safe and efficient steady-following state is established. When the preceding train stops abruptly in emergency, under the action of control law, the following train takes a corresponding measure to reduce its own velocity for movement in safety, efficiency and smoothness until it stops completely. The simulation results verify the effectiveness and feasibility of control method for safe and efficient train following operation.

     

  • loading
  • [1]
    FU Yin-ping, GAO Zi-you, LI Ke-ping. Modeling study for tracking operation of subway trains based on cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8 (4): 89-95. doi: 10.1016/S1570-6672(08)60036-7
    [2]
    PAN Deng, ZHENG Ying-ping. Safe following operation distance between two trains under railway moving automatic block system[J]. Journal of Tongji University: Natural Science, 2008, 36 (9): 1220-1225. (in Chinese). doi: 10.3321/j.issn:0253-374X.2008.09.014
    [3]
    CHEN Rong-wu, ZHU Chang-qian, LIU Li. Calculation and optimization of train headway in CBTC system[J]. Journal of Southwest Jiaotong University, 2011, 46 (4): 579-585. (in Chinese). doi: 10.3969/j.issn.0258-2724.2011.04.009
    [4]
    SHANGGUAN Wei, CAI Bai-gen, WANG Jing-jing, et al. Braking mode curve arithmetic of high-speed train above250km·h-1[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (3): 41-46, 54. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.03.008
    [5]
    LU Fei, SONG Mu-min, LI Xiao-lei. Research on subway train following control system under moving block system[J]. Journal of System Simulation, 2005, 17 (8): 1944-1947, 1950. (in Chinese). doi: 10.3969/j.issn.1004-731X.2005.08.042
    [6]
    CHANDLER R E, HERMAN R, MONTROLL E W. Traffic dynamics: studies in car following[J]. Operations Research, 1958, 6 (2): 165-184. doi: 10.1287/opre.6.2.165
    [7]
    KOMETANI E, SASAKI T. Dynamic behaviour of traffic with a non-linear spacing-speed relationship[C]∥Elsevier. Proceedings of the Theory of Traffic Flow. New York: Elsevier, 1959: 105-119.
    [8]
    GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15 (2): 105-111. doi: 10.1016/0191-2615(81)90037-0
    [9]
    BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51 (2): 1035-1042.
    [10]
    ZHAO Xiao-mei, GAO Zi-you. A new car-following model: full velocity and acceleration difference model[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2005, 47 (1): 145-150. doi: 10.1140/epjb/e2005-00304-3
    [11]
    PENG Guang-han, CAI Xin-hua, LIU Chang-qing, et al. Optimal velocity difference model for a car-following theory[J]. Physics Letter A, 2011, 375 (45): 3973-3977. doi: 10.1016/j.physleta.2011.09.037
    [12]
    XIE Zhao-tong. Moving block system[J]. Railway Signalling and Communication, 1996, 32 (2): 35-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH200601001.htm
    [13]
    ZIMMERMANN A, HOMMEL G. A train control system case study in model-based real time system design[C]∥IEEE. Proceedings of the 17th International Symposium on Parallel and Distributed Processing. Nice: IEEE, 2003: 118-130.
    [14]
    ZHANG Jian-bai, PENG Hui-shui, NI Da-cheng, et al. Overviewing braking technology of the high-speed trains[J]. Electric Drive for Locomotives, 2011 (4): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htm
    [15]
    HUANG Wen-ying, YANG Ning-qing, HUANG Min. Standard of railway train emergency braking distance limit in China[J]. China Railway Science, 2003, 24 (5): 84-90. (in Chinese). doi: 10.3321/j.issn:1001-4632.2003.05.017
    [16]
    HUANG Wen-ying, ZHANG Zhong-yang. Speed limits of railway train braking[J]. China Railway Science, 2007, 28 (6): 91-95. (in Chinese). doi: 10.3321/j.issn:1001-4632.2007.06.017
    [17]
    MARTINEZ J J, CANUDAS-DE-WIT C. A safe longitudinal control for adaptive cruise control and stop-and-go scenarios[J]. IEEE Transactions on Control Systems Technology, 2007, 15 (2): 246-258. doi: 10.1109/TCST.2006.886432

Catalog

    Article Metrics

    Article views (624) PDF downloads(776) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return