ZHANG Ming-yang, ZHANG Di, GUO Huan, FU Shan-shan, HUANG Ya-min. Complexity metric of waterborne traffic flow based on Lempel-Ziv algorithm and TOPSIS[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 109-118.
Citation: ZHANG Ming-yang, ZHANG Di, GUO Huan, FU Shan-shan, HUANG Ya-min. Complexity metric of waterborne traffic flow based on Lempel-Ziv algorithm and TOPSIS[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 109-118.

Complexity metric of waterborne traffic flow based on Lempel-Ziv algorithm and TOPSIS

More Information
  • Author Bio:

    ZHANG Ming-yang(1993-), male, doctoral student, +86-27-86581997, mingyang-zhang@whut.edu.cn

    ZHANG Di(1983-), male, associate professor, PhD, +86-27-86581997, zhangdi@whut.edu.cn

  • Received Date: 2016-08-11
  • Publish Date: 2017-02-25
  • In order to quantitatively analyze and classify waterborne traffic flow complexity, a method of waterborne traffic flow complexity metric was proposed based on Lempel-Ziv algorithm and TOPSIS (technique for order preference by similarity to an ideal solution).Firstly, LempelZiv algorithm was used to obtain the complexity eigenvalues of measured time sequences ofwaterborne traffic flow and other compared sequences (periodic sequence, logistic sequence, Henon sequence and random sequence).Secondly, the close degree of each sequence was calculated by using TOPSIS.The class of complexity was divided by those close degrees of compared sequences.At last, the complexity degree of each sequence was represented by close degrees of time sequences of waterborne traffic flow and the complexity class.This complexity metric was carried out on the waterborne traffic flow of south channel of the Yangtze River.Calculation result shows that the correlation coefficient of complexity close degree of waterborne ship traffic flow is 0.698 1 with the number of ship traffic accidents, and 0.769 2 with the downside traffic flow of standard ships, respectively.The change trend is basically consistent, so the complexity close degree can reflect the complexity of waterborne ship traffic flow.The close degrees of periodic sequence and random sequence are 0.000 1 and 0.999 9, respectively.Meanwhile, the close degrees of logistic sequence and Henon sequence are 0.449 2 and 0.537 7, respectively.The close degrees of logistic sequence and Henon sequence are greater than periodic sequence and and less than random sequence.The close degrees of waterborne traffic flow from July to November in 2013 are 0.828 0, 0.852 7, 0.856 5, 0.823 7 and 0.810 7, respectively, the complexity of waterborne traffic flow is basically consistent.The values of waterborne traffic flow are far greater than those of periodic sequence, locate between the values of Henon sequence and random sequence, and are closer to the value of random sequence, which shows that the waterborne traffic system is neither periodic nor completely stochastic.The complexity class of time sequence of waterborne traffic flow is Level 1, showing high complexity.

     

  • loading
  • [1]
    HUANG Ya-min. Study on marine traffic flow complexity metric[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese).
    [2]
    MAO Zhe, YAN Xin-ping, CHEN Hui, et al. Overview on marine accident analysis and its research trends[J]. China Safety Science Journal, 2010, 20 (12): 86-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201012017.htm
    [3]
    LIU Feng-tao. Complexity measure of macroscopical and microcosmic transportation systems and its application to management and control[D]. Tianjin: Tianjin University, 2006. (in Chinese).
    [4]
    ZHU Jun, ZHANG Wei. Calculation model of inland waterway transit capacity based on ship-following theory[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (5): 83-87. (in Chinese). http://transport.chd.edu.cn/article/id/200905015
    [5]
    ZHANG Yong. Nonlinear characteristics analysis, predication and control of traffic flow[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese).
    [6]
    GOERLANDT F, STHLBERG K, KUJALA P. Influence of impact scenario models on collision risk analysis[J]. Ocean Engineering, 2012, 47: 74-87. doi: 10.1016/j.oceaneng.2012.03.006
    [7]
    XU Wu-xiong, CHU Xiu-min, CHEN Xian-qiao, et al. Methods of generating vessels for traffic flow simulation of bridge areas waterway[J]. Journal of System Simulation, 2014, 26 (8): 1644-1651. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201408004.htm
    [8]
    TAN Zhi-rong, YAN Xin-ping, LIU Liang. Examination of vessel traffic flow distribution model in Yangtze River Bridge area[J]. Journal of Transport Information and Safety, 2010, 29 (2): 70-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201002015.htm
    [9] ÖZBAıB, OR I. Analysis and control of maritime transit traffic through the Istanbul Channel: a simulation approach[J]. Central European Journal of Operations Research, 2007, 15 (3): 235-252. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202012011.htm
    [10]
    CAO Bao-gui. The study on complex and dynamic characteristics of traffic flow and traffic jams[D]. Changchun: Jilin University, 2010. (in Chinese).
    [11]
    PINCUS S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences, 1991, 88 (6): 2297-2301. doi: 10.1073/pnas.88.6.2297
    [12]
    COOK A, BLOM H A P, LILLO F, et al. Applying complexity science to air traffic management[J]. Journal of Air Transport Management, 2014, 42: 149-158.
    [13]
    LIU Feng-tao. From intention to map: theoretical framework of the measure of system complexity[J]. Studies in Science of Science, 2009, 27 (7): 968-975. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ200907003.htm
    [14]
    XU Geng-bao, ZENG Lian-zhi. Simulation-based complex system study[J]. Computer Simulation, 2013, 30 (2): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201302002.htm
    [15]
    SHANG Peng-jian, LI Xue-wei, KAMAE S. Nonlinear analysis of traffic time series at different temporal scales[J]. Physics Letters A, 2006, 357 (4/5): 314-318.
    [16]
    WEN Yuan-qiao, HUANG Ya-min, ZHOU Chun-hui, et al. Modelling of marine traffic flow complexity[J]. Ocean Engineering, 2015, 104: 500-510.
    [17]
    WEN Yuan-qiao, HUANG Ya-min, YANG Jun-lan, et al. Modeling of marine traffic flow structure complexity[J]. Navigation of China, 2014, 37 (2): 62-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201402015.htm
    [18]
    FERMO L, TOSIN A. A fully-discrete-state kinetic theory approach to traffic flow on road networks[J]. Mathematical Models and Methods in Applied Sciences, 2015, 25 (3): 423-461.
    [19]
    YE Bo-jia, HU Ming-hua, ZHANG Chen, et al. Traffic structure-based air traffic complexity modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (1): 166-172. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201201026.htm
    [20]
    ZHANG Yong, GUAN Wei. Complexity measure of traffic flow based on union entropy and C0complexity[J]. Computer Engineering and Applications, 2010, 46 (15): 22-24, 33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201015007.htm
    [21]
    AGUARÓN-JOVEN J, ESCOBAR-URMENETA M T, GARCÍAALCARAZ J L, et al. A new synthesis procedure for TOPSIS based on AHP[J]. DYNA, 2015, 82 (191): 11-19.
    [22]
    LEMPEL A, ZIV J. On the complexity of finite sequences[J]. IEEE Transactions on Information Theory, 1976, 22 (1): 75-81.
    [23]
    LIU Feng-tao. Complexity measures and comparison of urban traffic flow and freeway traffic flow[J]. Systems Engineering, 2007, 25 (7): 78-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200707015.htm
    [24]
    TAN Guo-qiang. Complexity study of the discrete chaos system[D]. Changsha: Central South University, 2007. (in Chinese).
    [25]
    LI Jian, YE Xiang-dong. Recent development of chaos theory in topological dynamics[J]. Acta Mathematica Sinica, English Series, 2016, 32 (1): 83-114.
    [26]
    YUAN Li-guo. Research on dynamics of several dynamical systems based on logistic models and parameter identification[D]. Guangzhou: South China University of Technology, 2012. (in Chinese).
    [27]
    AKHMET M U, FEN M O. Entrainment by chaos[J]. Journal of Nonlinear Science, 2014, 24 (3): 411-439.
    [28]
    ZHANG Lei. A simulation approach to typical waterway capacity on the trunk line of the Yangtze River[D]. Wuhan: Wuhan University of Technology, 2009. (in Chinese).
    [29]
    LI Jian, YANG Xing, LIU Ke-zhong, et al. Study on the fluency of one-way waterway transportation based on First Come First Served (FCFS) model[C]//IEEE. The 3rd International Conference on Transportation Information and Safety. New York: IEEE, 2015: 669-674.
    [30]
    ZHANG Yong, GUAN Wei. Calculation Lyapunov exponent spectrum of time series based on least-squared support vector machine[J]. Computer Engineering and Applications, 2009, 45 (31): 196-199. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200931060.htm
    [31]
    YAN Xin-ping, ZHANG Di, ZHANG Ming-yang, et al. Research trends of transportation safety: identified from ESREL 2015 conference[J]. Journal of Transport Information and Safety, 2015, 33 (5): 1-8, 15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201505001.htm

Catalog

    Article Metrics

    Article views (703) PDF downloads(534) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return