MA Jian, ZHAO Xiang-mo, HE Shuan-hai, SONG Hong-xun, ZHAO Yu, SONG Huan-sheng, CHENG Lei, WANG Jian-feng, YUAN Zhuo-ya, HUANG Fu-wei, ZHANG Jian, YANG Lan. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137.
Citation: MA Jian, ZHAO Xiang-mo, HE Shuan-hai, SONG Hong-xun, ZHAO Yu, SONG Huan-sheng, CHENG Lei, WANG Jian-feng, YUAN Zhuo-ya, HUANG Fu-wei, ZHANG Jian, YANG Lan. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137.

Review of pavement detection technology

More Information
  • Author Bio:

    MA Jian(1957-), male, professor, PhD, majian@chd.edu.cn

  • Received Date: 2017-11-02
  • Publish Date: 2017-10-25
  • The important research results of pavement detection were summarized. The development state of technology detecting the damage, roughness, rutting, skid resistance (structure depth) and structural strength (deflection) of pavement was analyzed.The shortage and development direction of pavement detection technology were studied.Research result indicates that the development of pavement detection technology at home and abroad hasexperienced three stages: early traditional manual detection, semi-automatic detection at the end of 20 th century and nondestructive automatic detection at present.The main features of nondestructive automatic detection are rapidness and intellectualization, and the damage, roughness, rutting, skid resistance and structural strength of pavement as well as the alignments and facilities of roads are detected simultaneously because multi-source sensors work together and are integrated in the multi-purpose road test car.In term of pavement damage detection, digital image detection technology is used for the rapid detection of pavement cracks.In term of pavement roughness detection, laser displacement sensing technology is used to realize fast automatic detection.In term of pavement rutting detection, laser and digital image technology are used to realize noncontact intelligent detection.In terms of skid resistance detection and structural strength detection of pavement, the correlativity between the results detected by using sand paving method and Beckman beam method is established to realize the rapid detection of structure depth and deflection of pavement based on laser technology.In order to reduce the interference of external factors to the existing detection technology and detection equipment, and to improve the signal to noise ratio of detection, the road detection and data processing methods suitable for various working conditions should be developed to realize the high efficiency and intellectualization of pavement detection.

     

  • loading
  • [1]
    MOHAN A, POOBAL S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2017, DOI: 10.1016/j.aej.2017.01.020.
    [2]
    JIANG Ming-hu, GIELEN G, DENG Bei-xing, et al. A fast learning algorithm for time-delay neural networks[J]. Information Sciences, 2002, 148 (1-4): 27-39. doi: 10.1016/S0020-0255(02)00273-6
    [3]
    啜二勇. 国外路面自动检测系统发展综述[J]. 交通标准化, 2009 (204): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH200917028.htm

    CHUO Er-yong. Development summary of international pavement surface distress automatic survey system[J]. Transport Standardization, 2009 (204): 96-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH200917028.htm
    [4]
    KIM J Y. Development of new automated crack measurement algorithm using laser images of pavement surface[D]. Iowa: The University of Iowa, 2008.
    [5]
    MONEM T A, OLOUFA A A, MAHGOUB H. Asphalt crack detection using thermography[R]. Orlando: University of Central Florida, 2005: 1-12.
    [6]
    WANG K C P. Elements of automated survey of pavements and a3Dmethodology[J]. Journal of Modern Transportation, 2011, 19 (1): 51-57. doi: 10.1007/BF03325740
    [7]
    WANG K C P, GONG Wei-guo. Real-time automated survey system of pavement cracking in parallel environment[J]. Journal of Infrastructure Systems, 2005, 11 (3): 154-164. doi: 10.1061/(ASCE)1076-0342(2005)11:3(154)
    [8]
    HUANG Ya-xiong, XU Bu-gao. Automatic inspection of pavement cracking distress[J]. Journal of Electronic Imaging, 2006, 15 (1), DOI: 10.1117/1.2177650.
    [9]
    CHENG H D, MIYOJIM M. Automatic pavement distress detection system[J]. Information Sciences, 1998, 108 (1-4): 219-240. doi: 10.1016/S0020-0255(97)10062-7
    [10]
    王建锋. 激光路面三维检测专用车技术与理论研究[D]. 西安: 长安大学, 2010.

    WANG Jian-feng. Research on vehicle technology on road three-dimension measurement[D]. Xi'an: Chang'an University, 2010. (in Chinese).
    [11]
    罗瑞. 基于图像处理的路面裂缝检测算法研究[D]. 芜湖: 安徽工程大学, 2017.

    LUO Rui. Research of pavement crack detection algorithm based on image process[D]. Wuhu: Anhui Polytechnic University, 2017. (in Chinese).
    [12]
    CHENG Heng-da, CHEN Jim-rong, GLAZIER C, et al. Anovel fuzzy logic approach to pavement distress detection[C]//SPIE. Nondestructive Evaluation of Bridges and Highways. Breda: SPIE, 1996: 97-108.
    [13]
    BHUTANI K R, BATTOU A. Application of fuzzy relations to image enhancement[J]. Pattern Recognition Letters, 1995, 16 (9): 901-909. doi: 10.1016/0167-8655(95)00035-F
    [14]
    刘玉臣, 王国强, 林建荣. 基于模糊理论的路面裂缝图像增强方法[J]. 筑路机械与施工机械化, 2006 (2): 35-37. doi: 10.3969/j.issn.1000-033X.2006.02.016

    LIU Yu-chen, WANG Guo-qiang, LIN Jian-rong. Image enhancement for pavement crack image based on fuzzy theory[J]. Road Machinery and Construction Mechanization, 2006 (2): 35-37. (in Chinese). doi: 10.3969/j.issn.1000-033X.2006.02.016
    [15]
    唐磊, 赵春霞, 王鸿南, 等. 路面图像增强的多偏微分方程融合法[J]. 中国图象图形学报, 2008, 13 (9): 1661-1666. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200809005.htm

    TANG Lei, ZHAO Chun-xia, WANG Hong-nan, et al. Fusion of multiple basic PDE models for enhancing road surface images[J]. Journal of Image and Graphics, 2008, 13 (9): 1661-1666. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200809005.htm
    [16]
    ZUO Yong-xia, WANG Guo-qiang, ZUO Chun-cheng. Wavelet packet denoising for pavement surface cracks detection[C]//IEEE. International Conference on Computational Intelligence and Security. New York: IEEE, 2008: 481-484.
    [17]
    ZHANG Da-qi, QU Shi-ru, HE Li, et al. Automatic ridgelet image enhancement algorithm for road crack image based on fuzzy entropy and fuzzy divergence[J]. Optics and Lasers in Engineering, 2009, 47 (11): 1216-1225. doi: 10.1016/j.optlaseng.2009.05.014
    [18]
    王兴建, 秦国锋, 赵慧丽. 基于多级去噪模型的路面裂缝检测方法[J]. 计算机应用, 2010, 30 (6): 1606-1609, 1612. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm

    WANG Xing-jian, QIN Guo-feng, ZHAO Hui-li. Pavement crack detection method based on multilevel denoising model[J]. Journal of Computer Applications, 2010, 30 (6): 1606-1609, 1612. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm
    [19]
    李清泉, 胡庆武. 基于图像自动匀光的路面裂缝图像分析方法[J]. 公路交通科技, 2010, 27 (4): 1-5, 27. doi: 10.3969/j.issn.1002-0268.2010.04.001

    LI Qing-quan, HU Qing-wu. A pavement crack image analysis approach based on automatic image dodging[J]. Journal of Highway and Transportation Research and Development, 2010, 27 (4): 1-5, 27. (in Chinese). doi: 10.3969/j.issn.1002-0268.2010.04.001
    [20]
    KIRSCHKE K R, VELINSKY S A. Histogram-based approach for automated pavement-crack sensing[J]. Journal of Transportation Engineering, 1992, 118 (5): 700-710. doi: 10.1061/(ASCE)0733-947X(1992)118:5(700)
    [21]
    TANAKA N, UEMATSU K. A crack detection method in road surface images using morphology[C]//DBLP. Proceedings of IAPR Workshop on Machine Vision Applications. Trier: DBLP, 1998: 154-157.
    [22]
    闫茂德, 伯绍波, 贺昱曜. 一种基于形态学的路面裂缝图像检测与分析方法[J]. 工程图学学报, 2008 (2): 142-147. doi: 10.3969/j.issn.1003-0158.2008.02.024

    YAN Mao-de, BO Shao-bo, HE Yu-yao. A method of image detection and analysis for pavement crack based on morphology[J]. Journal of Engineering Graphics, 2008 (2): 142-147. (in Chinese). doi: 10.3969/j.issn.1003-0158.2008.02.024
    [23]
    OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//IEEE. 17th European Signal Processing Conference. New York: IEEE, 2009: 622-626.
    [24]
    CHENG H D, CHEN Jim-rong, GLAZIER C, et al. Novel approach to pavement cracking detection based on fuzzy set theory[J]. Journal of Computing in Civil Engineering, 1999, 13 (4): 270-280. doi: 10.1061/(ASCE)0887-3801(1999)13:4(270)
    [25]
    CHENG H D, SHI X J, GLAZIER C. Real-time image thresholding based on sample space reduction and interpolation approach[J]. Journal of Computing in Civil Engineering, 2003, 17 (4): 264-272. doi: 10.1061/(ASCE)0887-3801(2003)17:4(264)
    [26]
    李清泉, 刘向龙. 路面裂缝影像几何特征提取算法[J]. 中国科技论文在线, 2007, 2 (7): 517-522. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200707012.htm

    LI Qing-quan, LIU Xiang-long. An algorithm to image-based pavement cracks geometry features extraction[J]. Sciencepaper Online, 2007, 2 (7): 517-522. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200707012.htm
    [27]
    孙波成, 邱延峻. 路面裂缝图像处理算法研究[J]. 公路交通科技, 2008, 25 (2): 64-68. doi: 10.3969/j.issn.1002-0268.2008.02.014

    SUN Bo-cheng, QIU Yan-jun. Pavement crack diseases recognition based on image processing algorithm[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (2): 64-68. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.02.014
    [28]
    HUANG Ya-xiong, XU Bu-gao. Automatic inspection of pavement cracking distress[J]. Journal of Electronic Imaging, 2006, 15 (1), DOI: 10.1117/1.2177650.
    [29]
    SOMNCHAREAN S, PHIPHOBMONGKOL S. Crack detection on asphalt surface image using enhanced grid cell analysis[C]//IEEE. 4th IEEE International Symposium on Electronic Design, Test and Applications. New York: IEEE, 2008: 49-54.
    [30]
    唐磊, 赵春霞, 王鸿南, 等. 基于图像三维地形模型的路面裂缝自动检测[J]. 计算机工程, 2008, 34 (5): 20-21, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200805009.htm

    TANG Lei, ZHAO Chun-xia, WANG Hong-nan, et al. Automated pavement crack detection based on image 3Dterrain model[J]. Computer Engineering, 2008, 34 (5): 20-21, 38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200805009.htm
    [31]
    黄建平. 基于二维图像和深度信息的路面裂缝检测关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    HUANG Jian-ping. Research on the key technologies of pavement crack inspection based on 2D image and depth information[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
    [32]
    王刚, 贺安之, 肖亮. 基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J]. 光学学报, 2006, 26 (3): 341-346. doi: 10.3321/j.issn:0253-2239.2006.03.005

    WANG Gang, HE An-zhi, XIAO Liang. Algorithm research in ridgelet transform domain based on the image content of freeway local linear crack[J]. Acta Optica Sinica, 2006, 26 (3): 341-346. (in Chinese). doi: 10.3321/j.issn:0253-2239.2006.03.005
    [33]
    CHUA Koon-meng, XU Ling. Simple procedure for identifying pavement distresses from video images[J]. Journal of Transportation Engineering, 1994, 120 (3): 412-431. doi: 10.1061/(ASCE)0733-947X(1994)120:3(412)
    [34]
    LEE B J, LEE H D. Position-invariant neural network for digital pavement crack analysis[J]. Computer-Aided Civil and Infrastructure Engineering, 2004, 19 (2): 105-118. doi: 10.1111/j.1467-8667.2004.00341.x
    [35]
    肖旺新, 严新平, 张雪. 基于混合密度因子的路面损坏自动识别研究[J]. 交通运输工程与信息学报, 2005, 3 (2): 19-26. doi: 10.3969/j.issn.1672-4747.2005.02.004

    XIAO Wang-xin, YAN Xin-ping, ZHANG Xue. Research on the automatic pavement distress recognition based on synthetical distress density factor[J]. Journal of Transportation Engineering and Information, 2005, 3 (2): 19-26. (in Chinese). doi: 10.3969/j.issn.1672-4747.2005.02.004
    [36]
    丁爱玲, 焦李成. 基于支撑矢量机的路面损坏识别[J]. 长安大学学报: 自然科学版2007, 27 (2): 34-37.

    DING Ai-ling, JIAO Li-cheng. Automation of recogniting pavement surface distress based on support vector machine[J]. Journal of Chang'an University: Natural Science Edition, 2007, 27 (2): 34-37. (in Chinese).
    [37]
    OLIVEIRA H, CORREIA P L. Supervised strategies for cracks detection in images of road pavement flexible surfaces[C]//IEEE. 16th European Signal Processing Conference. New York: IEEE, 2008, 1-5.
    [38]
    李清泉, 刘向龙. 路面影像破损加权评定方法[J]. 中国公路学报, 2009, 22 (4): 45-49. doi: 10.3321/j.issn:1001-7372.2009.04.008

    LI Qing-quan, LIU Xiang-long. Pavement image distress evaluation method based on weighted scheme[J]. China Journal of Highway and Transport, 2009, 22 (4): 45-49. (in Chinese). doi: 10.3321/j.issn:1001-7372.2009.04.008
    [39]
    TALAB A M A, HUANG Zhang-can, XI Fan, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik-International Journal for Light and Electron Optics, 2016, 127 (3): 1030-1033. doi: 10.1016/j.ijleo.2015.09.147
    [40]
    ZOU Qin, CAO Yu, LI Qing-quan, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33 (3): 227-238. doi: 10.1016/j.patrec.2011.11.004
    [41]
    SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]//IEEE. 16th International IEEE Annual Conference on Intelligent Transportation Systems. New York: IEEE, 2013: 2039-2044.
    [42]
    SONG Hong-xun, WANG Wei-xing, WANG Feng-ping, et al. Pavement crack detection by ridge detection on fractional calculus and dual-thresholds[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (4): 19-30. doi: 10.14257/ijmue.2015.10.4.03
    [43]
    张德津, 李清泉, 陈颖, 等. 基于空间聚集特征的沥青路面裂缝检测方法[J]. 自动化学报, 2016, 42 (3): 443-454. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603010.htm

    ZHANG De-jin, LI Qing-quan, CHEN Ying, et al. Asphalt pavement crack detection based on spatial clustering feature[J]. Acta Automatica Sinica, 2016, 42 (3): 443-454. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603010.htm
    [44]
    RABAH M, EIHATTAB A, FAYAD A. Automatic concrete cracks detection and mapping of terrestrial laser scan data[J]. NRIAG Journal of Astronomy and Geophysics, 2013, 2 (2): 250-255. doi: 10.1016/j.nrjag.2013.12.002
    [45]
    CHOI J, ZHU L, KUROSU H. Detection of cracks in paved road surface using laser scan image data[C]//ISPRS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vienna: ISPRS, 2016: 559-562.
    [46]
    LI Wei, HUYAN Ju, TIGHE S L, et al. Three-Dimensional pavement crack detection algorithm based on two-dimensional empirical mode decomposition[J]. Journal of Transportation Engineering Part B: Pavements, 2017, 143 (2), DOI: 10.1061/JPEODX.0000006.
    [47]
    ZHANG A, WANG K C P, LI Bao-xian, et al. Automated pixel-level pavement crack detection on 3Dasphalt surfaces using a deep-learning network[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32 (10): 805-819. doi: 10.1111/mice.12297
    [48]
    宋宏勋, 马建, 王建锋, 等. 基于双相机立体摄影测量的路面裂缝识别方法[J]. 中国公路学报, 2015, 28 (10): 18-25, 40. doi: 10.3969/j.issn.1001-7372.2015.10.003

    SONG Hong-xun, MA Jian, WANG Jian-feng, et al. Identification of pavement crack based on dual camera stereo photogrammetry[J]. China Journal of Highway and Transport, 2015, 28 (10): 18-25, 40. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.10.003
    [49]
    王建锋, 马建, 马荣贵, 等. 动位移的加速度精确测量技术研究[J]. 计算机科学, 2010, 37 (12): 201-202, 237. doi: 10.3969/j.issn.1002-137X.2010.12.046

    WANG Jian-feng, MA Jian, MA Rong-gui, et al. Study on calculation of dynamic displacement from time-frequency integration of acceleration[J]. Computer Science, 2010, 37 (12): 201-202, 237. (in Chinese). doi: 10.3969/j.issn.1002-137X.2010.12.046
    [50]
    王建锋, 李平, 韩毅. 基于多传感器综合的路面不平度测量[J]. 武汉大学学报: 工学版, 2012, 45 (3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201203018.htm

    WANG Jian-feng, LI Ping, HAN Yi. Road roughness measurement based on multi-sensor data comprehension[J]. Engineering Journal of Wuhan University, 2012, 45 (3): 361-365. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201203018.htm
    [51]
    吴秉军, 刘东海, 孙源泽, 等. 基于路面高程自动测量的全断面平整度计算方法[J]. 中国公路学报, 2016, 29 (11): 10-17. doi: 10.3969/j.issn.1001-7372.2016.11.002

    WU Bing-jun, LIU Dong-hai, SUN Yuan-ze, et al. Pavement roughness calculation of entire road surface based on automatic road elevation measuring[J]. China Journal of Highway and Transport, 2016, 29 (11): 10-17. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.11.002
    [52]
    王建锋, 宋宏勋, 马荣贵. 基于阵列信号融合的路面平整度检测原理研究[J]. 微电子学与计算机, 2012, 29 (10): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201210016.htm

    WANG Jian-feng, SONG Hong-xun, MA Rong-gui. Road roughness detection method based on array signals processing[J]. Microelectronics and Computer, 2012, 29 (10): 69-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201210016.htm
    [53]
    DU Yu-chuan, LIU Cheng-long, WU Di-fei, et al. Application of vehicle mounted accelerometers to measure pavement roughness[J]. International Journal of Distributed Sensor Networks, 2016, DOI: 10.1155/2016/8413146.
    [54]
    毛庆洲, 叶浩, 丁诗雄, 等. 基于小波变换的路面平整度自适应提取算法[J]. 中国公路学报, 2015, 28 (10): 11-17. doi: 10.3969/j.issn.1001-7372.2015.10.002

    MAO Qing-zhou, YE Hao, DING Shi-xiong, et al. Adaptive extraction algorithm of pavement roughness based on wavelet transformation[J]. China Journal of Highway and Transport, 2015, 28 (10): 11-17. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.10.002
    [55]
    王建锋, 宋宏勋, 马荣贵. 路面平整度评价指标IRI的影响因素[J]. 重庆交通大学学报: 自然科学版, 2012, 31 (6): 1145-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201206013.htm

    WANG Jian-feng, SONG Hong-xun, MA Rong-gui. Influencing factors of international roughness index[J]. Journal of Chongqing Jiaotong University: Natural Science, 2012, 31 (6): 1145-1148. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201206013.htm
    [56]
    DU Yu-chuan, LIU Cheng-long, WU Di-fei, et al. Measurement of international roughness index by using Z-axis accelerometers and GPS[J]. Mathematical Problems in Engineering, 2014, DOI: 10.1155/2014/928980.
    [57]
    江东, 刘绪坤. 基于磁悬浮振动测试技术的公路平整度测试研究[J]. 仪表技术与传感器, 2017 (2): 102-106. doi: 10.3969/j.issn.1002-1841.2017.02.026

    JIANG Dong, LIU Xu-kun. Road flatness detection based on magnetic levitation vibration measurement technique[J]. Instrument Technique and Sensor, 2017 (2): 102-106. (in Chinese). doi: 10.3969/j.issn.1002-1841.2017.02.026
    [58]
    刘庆华, 周帏, 何仁, 等. 基于优化模糊C均值聚类算法的路面不平度识别[J]. 农业工程学报, 2014, 30 (22): 195-200. doi: 10.3969/j.issn.1002-6819.2014.22.024

    LIU Qing-hua, ZHOU Wei, HE Ren, et al. Road roughness recognition based on improved fuzzy C-mean algorithm combined with genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (22): 195-200. (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.22.024
    [59]
    崔丹丹, 张才千, 韩东. 基于BP神经网络的路面不平度检测与仿真[J]. 计算机仿真, 2014, 31 (5): 162-166. doi: 10.3969/j.issn.1006-9348.2014.05.036

    CUI Dan-dan, ZHANG Cai-qian, HAN Dong. Road roughness detection and simulation based on BP neural network[J]. Computer Simulation, 2014, 31 (5): 162-166. (in Chinese). doi: 10.3969/j.issn.1006-9348.2014.05.036
    [60]
    WANG Wei, BEI Shao-yi, ZHANG Lan-chun, et al. Pavement roughness identification research in time domain based on neural network[J]. Journal of Vibroengineering, 2015, 17 (7): 3865-3875.
    [61]
    王建锋, 马建, 马荣贵, 等. 精确车辙检测系统的研究与开发[J]. 微电子学与计算机, 2011, 28 (2): 175-177, 180. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201102041.htm

    WANG Jian-feng, MA Jian, MA Rong-gui, et al. Research and development of detection system for road rut[J]. Microelectronics and Computer, 2011, 28 (2): 175-177, 180. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201102041.htm
    [62]
    李莉, 孙立军, 谭生光, 等. 用于路面车辙检测的线结构光图像处理流程[J]. 同济大学学报: 自然科学版, 2013, 41 (5): 710-715. doi: 10.3969/j.issn.0253-374x.2013.05.013

    LI Li, SUN Li-jun, TAN Sheng-guang, et al. Line-structured light image processing procedure for pavement rut detection[J]. Journal of Tongji University: Natural Science, 2013, 41 (5): 710-715. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.05.013
    [63]
    WANG C Y, TAN Q C, GUO R H. Design and optimization of a linear laser beam[J]. Lasers in Engineering, 2014, 27 (5/6): 373-381.
    [64]
    WEI Yun-tao, HONG Han-yu, ZHANG Xiu-hua, et al. Anew method for automatic detection of rut feature based on road laser images[C]//SPIE. 6th International Symposium on Multispectral Image Processing and Pattern Recognition. Breda: SPIE, 2009, DOI: 10.1117/12.833155.
    [65]
    陈小宇, 雷波. 一种快速鲁棒的车辙检测方法[J]. 应用科学学报, 2013, 31 (5): 512-518. doi: 10.3969/j.issn.0255-8297.2013.05.011

    CHEN Xiao-yu, LEI Bo. Fast and robust measurement of pavement ruts[J]. Journal of Applied Sciences, 2013, 31 (5): 512-518. (in Chinese). doi: 10.3969/j.issn.0255-8297.2013.05.011
    [66]
    李清泉, 雷波, 毛庆洲, 等. 利用激光三角法进行快速车辙检测[J]. 武汉大学学报: 信息科学版, 2010, 35 (3): 302-307. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201003015.htm

    LI Qing-quan, LEI Bo, MAO Qing-zhou, et al. A fast method for pavement ruts measuring with laser triangulation[J]. Geomatics and Information Science of Wuhan University, 2010, 35 (3): 302-307. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201003015.htm
    [67]
    KAGE T, MATSUSHIMA K. Method of rut detection using lasers and in-vehicle stereo camera[C]//IEEE. 2015International Conference on Intelligent Informatics and Biomedical Sciences. New York: IEEE, 2015: 48-53.
    [68]
    ZHANG Yue, GAO Ting-ting. VC-based rutting digital imaging automatic detection technology research and design for road construction[J]. Advanced Materials Research, 2012 (461): 370-372.
    [69]
    CUI Xin-zhuang, ZHOU Xing-lin, LOU Jun-jie, et al. Measurement method of asphalt pavement mean texture depth based on multi-line laser and binocular vision[J]. International Journal of Pavement Engineering, 2017, 18 (5): 459-471. doi: 10.1080/10298436.2015.1095898
    [70]
    刘仪培, 皇甫皝. 路表构造特征的沥青路面抗滑性能评价方法研究[J]. 黑龙江交通科技, 2016 (3): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJJ201603001.htm

    LIU Yi-pei, HUANG Pu-guang. Study on asphalt pavement skid resistance evaluation method based on the road surface structural features[J]. Communications Science and Technology Heilongjiang, 2016 (3): 1-3. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLJJ201603001.htm
    [71]
    马荣贵, 王建锋, 李平. 沥青路面构造深度精确检测方法研究[J]. 科学技术与工程, 2014, 14 (8): 265-268. doi: 10.3969/j.issn.1671-1815.2014.08.052

    MA Rong-gui, WANG Jian-feng, LI Ping. Research on high precision measurement of pavement texture depth[J]. Science Technology and Engineering, 2014, 14 (8): 265-268. (in Chinese). doi: 10.3969/j.issn.1671-1815.2014.08.052
    [72]
    刘琬辰, 黄晓明. 基于图像处理的沥青路面构造深度评价方法的优化研究[J]. 北方交通, 2013 (3): 9-13. doi: 10.3969/j.issn.1673-6052.2013.03.004

    LIU Wan-chen, HUANG Xiao-ming. Optimization research of the asphalt pavement surface texture evaluation based on digital image[J]. Northern Communications, 2013 (3): 9-13. (in Chinese). doi: 10.3969/j.issn.1673-6052.2013.03.004
    [73]
    王景彬. 高速公路沥青路面检测方法及注意事项探究[J]. 建筑知识, 2017 (10): 153-154.

    WANG Jing-bin. Study on detection methods and precautions of asphalt pavement of expressway[J]. Architectural Knowledge, 2017 (10): 153-154. (in Chinese).
    [74]
    宁斌权. 基于数字图像技术的沥青路面构造深度的评价方法[J]. 装备技术, 2017 (7): 143, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201710017.htm

    NING Bin-quan. The evaluation method of asphalt pavement construction depth based on digital image technology[J]. Equipment Technology, 2017 (7): 143, 65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201710017.htm
    [75]
    CIGADA A, MANCOSU F, MANZONI S, et al. Lasertriangulation device for in-line measurement of road texture at medium and high speed[J]. Mechanical Systems and Signal Processing, 2010, 24 (7): 2225-2234. doi: 10.1016/j.ymssp.2010.05.002
    [76]
    周兴林, 蒋难得, 肖旺新, 等. 基于激光视觉的沥青路面构造深度测量方法[J]. 中国公路学报, 2014, 27 (3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201403003.htm

    ZHOU Xing-lin, JIANG Nan-de, XIAO Wang-xin, et al. Measurement method for mean texture depth of asphalt pavement based on laser vision[J]. China Journal of Highway and Transport, 2014, 27 (3): 11-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201403003.htm
    [77]
    王旭东. 沥青路面弯沉指标的探讨[J]. 公路交通科技, 2015, 32 (1): 1-12, 24. doi: 10.3969/j.issn.1002-0268.2015.01.001

    WANG Xu-dong. Discussion of asphalt pavement deflection indicator[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (1): 1-12, 24. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.01.001
    [78]
    胡蓉. 杭州市政道路动态弯沉检测及半刚性路面结构适用性分析[D]. 杭州: 浙江大学, 2014.

    HU Rong. Research on dynamic deflection testing and semirigid pavement structure applicability of Hangzhou municipal roads[D]. Hangzhou: Zhejiang University, 2014. (in Chinese).
    [79]
    吴玉, 蒋鑫, 梁雪娇, 等. 轮载作用下典型沥青路面结构力学行为分析[J]. 西南交通大学学报, 2017, 52 (3): 563-570. doi: 10.3969/j.issn.0258-2724.2017.03.017

    WU Yu, JIANG Xin, LIANG Xue-jiao. Mechanical behaviors of typical asphalt pavement structures under wheel loads[J]. Journal of Southwest Jiaotong University, 2017, 52 (3): 563-570. (in Chinese). doi: 10.3969/j.issn.0258-2724.2017.03.017
    [80]
    李盛, 陈尚武, 刘朝晖, 等. 旧水泥混凝土路面弯沉测试的若干问题研究[J]. 中南大学学报: 自然科学版, 2015, 46 (12): 4713-4718. doi: 10.11817/j.issn.1672-7207.2015.12.044

    LI Sheng, CHEN Shang-wu, LIU Chao-hui, et al. Some problems on deflection test of old cement concrete pavement[J]. Journal of Central South University: Science and Technology, 2015, 46 (12): 4713-4718. (in Chinese). doi: 10.11817/j.issn.1672-7207.2015.12.044
    [81]
    周岚, 倪富键, 王浩仰. 基于弯沉盆的高速公路沥青混凝土路面结构状况评价研究[J]. 公路, 2015 (9): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201509001.htm

    ZHOU Lan, NI Fu-jian, WANG Hao-yang. Research on evaluation of highway asphalt pavement structure based on deflection basin[J]. Highway, 2015 (9): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201509001.htm
    [82]
    赵永胜. G207锡海线公路改建工程路基弯沉检测方法对比分析[J]. 黑龙江交通科技, 2016 (9): 24-25. doi: 10.3969/j.issn.1008-3383.2016.09.013

    ZHAO Yong-sheng. Contrastive analysis of subgrade detection methods for Highway G207Xihai Line reconstruction project[J]. Communications Science and Technology Heilongjiang, 2016 (9): 24-25. (in Chinese). doi: 10.3969/j.issn.1008-3383.2016.09.013
    [83]
    洪亮, 杨帆, 付丽, 等. 前插式激光测距自动弯沉仪校准及贝克曼梁对比试验分析[J]. 交通标准化, 2014, 42 (17): 149-153, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201417038.htm

    HONG Liang, YANG Fan, FU Li, et al. Contrast test analysis on front-insert type auto deflectometer with laser range meter and Benkelman beam method[J]. Transportation Standardization, 2014, 42 (17): 149-153, 156. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201417038.htm
    [84]
    GEORGE V, KUMAR A. Studies on modulus of resilience using cyclic tri-axial test and correlations to PFWD, DCP and CBR[J]. International Journal of Pavement Engineering, 2016: 1-10.
    [85]
    CHAI G, MANOHARAN S, GOLDING A, et al. Evaluation of the traffic speed deflectometer data using simplified deflection model[J]. Transportation Research Procedia, 2016, 14: 3031-3039. doi: 10.1016/j.trpro.2016.05.444
    [86]
    郑佳麒. GPR信号处理技术研究及在道路沥青注浆评价中的应用[J]. 交通科技, 2017 (2): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201702044.htm

    ZHENG Jia-qi. Research on GPR data processing and application on the evaluation of asphalt grouting[J]. Transportation Science and Technology, 2017 (2): 143-146. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201702044.htm
    [87]
    AHMED M, TAREFDER R, MAJI A, et al. Variation of FWD modulus due to incorporation of GPR predicted layer thicknesses[C]//IEEE. 15th International Conference on Ground Penetrating Radar. New York: IEEE, 2014: 345-350.
    [88]
    MARECOS V, FONTUL S, DE LURDES ANTUNES M. Evaluation of a highway pavement using non-destructive tests: falling weight deflectometer and ground penetrating radar[J]. Construction and Building Materials, 2017, 154: 1164-1172. doi: 10.1016/j.conbuildmat.2017.07.034
    [89]
    AHMED M U, TAREFDER R A. Incorporation of GPR and FWD into pavement mechanistic-empirical design[J]. Construction and Building Materials, 2017, 154: 1272-1282. doi: 10.1016/j.conbuildmat.2017.06.105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4562) PDF downloads(2246) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return