Runway capacity evaluation based on multi-agent modeling and Monte Carlo simulation
-
摘要: 分析了飞机编队动力学特性以及机场组织模式、管制方式和飞行方式等特征,建立了跑道容量计算模型和跑道运行模型;以中距平行双跑道半混合运行模式和混合运行模式作为典型场景,综合运用多智能体建模和蒙特卡洛仿真方法,计算了不同运行模式下跑道容量;设计正交仿真试验,研究了跑道容量与运行模式、起降比例、出动间隔、机型比例、编队数量和环境因素的关系。仿真结果表明:相比于半混合运行模式,混合运行模式的起飞容量平均增加了55.2%,着陆容量平均减小了6.2%,总容量平均增加了28.5%;随着出动间隔从60 s增加到180 s,半混合运行模式的总容量减小了27.2%,混合运行模式的总容量减小了24.9%;随着机型比例从0增加到1.0,半混合运行模式的总容量减小了29.7%,混合运行模式的总容量减小了29.2%;随着平均编队数量从1.9增加到3.2,半混合运行模式下的总容量增加了9.8%,混合运行模式的总容量增加了7.1%。可见,混合运行模式的性能整体优于半混合运行模式,跑道容量与任务出动方式密切相关,需要根据任务出动方式合理选择跑道运行模式。Abstract: The dynamic characteristics of aircraft formation and the characteristics of airport organization mode, control mode, and flight mode were analyzed, and the runway capacity calculation model and runway operation model were established. With semi-hybrid and hybrid operation modes for intermediate-distance parallel dual runway as typical scenarios, the runway capacities under different operation modes were calculated by comprehensively using multi-agent modeling and Monte Carlo simulation. An orthogonal simulation test was designed to investigate the relationship between runway capacity and various factors including operation mode, takeoff and landing ratio, departure interval, aircraft type ratio, formation number, and environmental conditions. Simulation results indicate that compared with the semi-hybrid operation mode, the hybrid operation mode increases takeoff capacity by an average of 55.2%, decreases landing capacity by 6.2%, and enhances overall capacity by 28.5%. As the departure interval increases from 60 s to 180 s, the total capacity of the semi-hybrid operation mode decreases by 27.2%, and the hybrid operation mode decreases by 24.9%. As the aircraft type ratio increases from 0 to 1.0, the total capacity of the semi-hybrid operation mode decreases by 29.7%, and the hybrid operation mode decreases by 29.2%. As the average formation number rises from 1.9 to 3.2, the total capacity of the semi-hybrid operation mode increases by 9.8%, and the hybrid operation mode increases by 7.1%. Therefore, the performance of the hybrid operation mode is better than the semi-hybrid operation mode, the runway capacity is closely related to the task dispatch mode, and the runway operation mode needs to be reasonably selected according to the task dispatch mode.
-
表 1 跑道状态转换
Table 1. Runway state transition
飞机状态参数 跑道状态参数 着陆飞机到达第4转弯角位置 转变为“占用” 着陆飞机脱离跑道 转变为“空闲” 起飞飞机到达跑道端 转变为“占用” 起飞飞机到达第1转弯角位置 转变为“空闲” 与后机(相邻跑道)距离小于斜向间隔 相邻跑道禁止使用 与后机(相邻跑道)距离大于斜向间隔 相邻跑道允许使用 表 2 管制信息与管制命令对应关系
Table 2. Corresponding relationships of regulatory informations and regulatory orders
管制信息 管制命令 “当前任务批次为起飞批次”与“跑道状态为空闲”与“相邻跑道允许本跑道使用” 允许起飞 “当前任务批次为着陆批次”与“跑道状态为空闲”与“相邻跑道允许本跑道使用” 允许着陆 其他 等待 表 3 跑道占用时间
Table 3. Runway occupying times
机型 A型机 B型机 起降方式 起飞 着陆 起飞 着陆 仿真模型/s 44.3 189.2 48.6 301.7 实际测量/s 48.2 195.6 53.5 315.3 绝对误差/s 3.9 6.4 4.9 13.6 相对误差/% 8.1 3.4 9.2 4.3 表 4 飞行参数
Table 4. Flight parameters
机型 A型 B型 起飞加速度/(m·s-2) 2.9 2.5 离地速度/(m·s-1) 93.6 86.0 爬升加速度/(m·s-2) 1.2 1.0 爬升坡度/(°) 0.06 0.06 着陆速度/(m·s-1) 109.4 100 降落加速度/(m·s-2) 0.5 0.4 着陆加速度/(m·s-2) 1.7 1.4 着陆减速完成速度/(m·s-1) 13.9 8.3 表 5 跑道容量-起降比例统计结果
Table 5. Statistics results of runway capacities and takeoff/landing ratios
起降比例 0 0.2 0.4 0.6 0.8 1.0 半混合运行模式/架次 起飞容量 0.0 12.2 27.2 47.4 75.1 95.8 着陆容量 50.7 47.3 42.4 37.3 21.5 0.0 总容量 50.7 59.5 69.6 84.7 96.6 95.8 混合运行模式/架次 起飞容量 0.0 12.9 30.6 58.4 106.2 191.9 着陆容量 45.7 43.3 39.9 34.3 23.7 0.0 总容量 45.7 56.2 70.5 92.7 129.9 191.9 表 6 跑道容量-出行间隔统计结果
Table 6. Statistics results of runway capacities and take off intervals
出动间隔/s 60 90 120 150 180 半混合运行模式/架次 起飞容量 36.7 32.8 26.8 24.8 22.3 着陆容量 38.6 36.6 34.6 33.5 32.5 总容量 75.3 69.4 61.4 58.3 54.8 混合运行模式/架次 起飞容量 43.4 40.1 35.0 33.5 31.0 着陆容量 37.3 35.1 32.7 31.1 29.6 总容量 80.7 75.2 67.7 64.6 60.6 表 7 跑道容量-机型比例统计结果
Table 7. Statistics results of runway capacities and aircraft type ratios
机型比例 0 0.3 0.5 0.7 1.0 半混合运行模式/架次 起飞容量 39.0 36.8 34.4 32.0 26.8 着陆容量 41.4 38.8 36.6 33.8 29.7 总容量 80.4 75.6 71.0 65.8 56.5 混合运行模式/架次 起飞容量 45.8 44.3 41.6 37.4 30.8 着陆容量 39.2 37.2 35.6 33.6 29.4 总容量 85.0 81.5 77.2 71.0 60.2 表 8 跑道容量-平均编队数量统计结果
Table 8. Statistics results of runway capacities and average numbers of formations
平均编队数量 1.9 2.1 2.4 2.7 3.2 半混合运行模式/架次 起飞容量 36.8 38.3 39.4 40.6 42.1 着陆容量 38.3 38.6 39.4 39.8 40.4 总容量 75.1 76.9 78.8 80.4 82.5 混合运行模式/架次 起飞容量 44.8 45.2 47.0 47.7 48.6 着陆容量 36.9 37.4 37.8 38.5 38.9 总容量 81.7 82.6 84.8 86.2 87.5 -
[1] 中国民用航空局. 2021年民航行业发展统计公报[R]. 北京: 中国民用航空局, 2022.Civil Aviation Administration of China. The civil aviation industry development statistical bulletin in 2021[R]. Beijing: Civil Aviation Administration of China, 2022. (in Chinese) [2] 赵嶷飞, 王梦琦. 空中交通工程学理论内涵与关键科学技术[J]. 航空学报, 2022, 43(12): 026537.ZHAO Yi-fei, WANG Meng-qi. Important theories and critical scientific technology of air traffic engineering[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 026537. (in Chinese) [3] BOWEN E G, PEARCEY T. Delays in the flow of air traffic[J]. The Royal Aeronautical Society, 1948, 52(448): 251-258. doi: 10.1017/S0368393100103013 [4] FARHADI F, GHONIEM A, AL-SALEM M. Runway capacity management—an empirical study with application to Doha International Airport[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 68: 53-63. doi: 10.1016/j.tre.2014.05.004 [5] JANIĆ M. Analysing and modelling some effects of solutions for matching the airport runway system capacity to demand[J]. Journal of Air Transport Management, 2017, 65: 166-180. doi: 10.1016/j.jairtraman.2017.06.007 [6] JACQUILLAT A, ODONI A R. A roadmap toward airport demand and capacity management[J]. Transportation Research Part A: Policy and Practice, 2018, 114: 168-185. doi: 10.1016/j.tra.2017.09.027 [7] NEWELL G F. Airport capacity and delays[J]. Transportation Science, 1979, 13(3): 201-241. doi: 10.1287/trsc.13.3.201 [8] DRAY L. An empirical analysis of airport capacity expansion[J]. Journal of Air Transport Management, 2020, 87: 101850. doi: 10.1016/j.jairtraman.2020.101850 [9] TASCÓN D C, DÍAZ OLARIAGA O. Air traffic forecast and its impact on runway capacity. A system dynamics approach[J]. Journal of Air Transport Management, 2021, 90: 101946. doi: 10.1016/j.jairtraman.2020.101946 [10] CHEUNG W L, PIPLANI R, ALAM S, et al. Dynamic capacity and variable runway configurations in airport slot allocation[J]. Computers and Industrial Engineering, 2021, 159: 107480. doi: 10.1016/j.cie.2021.107480 [11] 赵洪元. 违反飞机纵向间隔概率模型的研究[J]. 北方交通大学学报, 1998, 22(3): 49-52.ZHAO Hong-yuan. Study on the probabilistic model for the violation of the aircraft longitudinal separation[J]. Journal of Northern Jiaotong University, 1998, 22(3): 49-52. (in Chinese) [12] 胡明华, 刘松, 苏兰根. 基于统计分析的单跑道容量估计模型研究[J]. 数据采集与处理, 2000, 15(1): 74-77.HU Ming-hua, LIU Song, SU Lan-gen. Research of airport capacity estimation model based on statistic analysis[J]. Journal of Data Acquisition and Processing, 2000, 15(1): 74-77. (in Chinese) [13] 戴福青, 陈华. 机场跑道容量若干问题的研究[J]. 中国民航学院学报, 2000(3): 24-29.DAI Fu-qing, CHEN Hua. A study of some factors in airport runway capacities[J]. Journal of Civil Aviation University of China, 2000(3): 24-29. (in Chinese) [14] 蒋兵, 胡明华, 田勇, 等. 终端区空中交通容量评估的仿真方法[J]. 交通运输工程学报, 2003, 3(1): 97-100. http://transport.chd.edu.cn/article/id/200301022JIANG Bing, HU Ming-hua, TIAN Yong, et al. Simulation method for air traffic capacity evaluation in terminal area[J]. Journal of Traffic and Transportation Engineering, 2003, 3(1): 97-100. (in Chinese) http://transport.chd.edu.cn/article/id/200301022 [15] 王维, 李伟. 机场近距平行跑道一起一降模式下的容量计算[J]. 中国民航大学学报, 2009, 27(3): 20-22.WANG Wei, LI Wei. Airport capacity calculation of closely spaced parallel runway under operation mode of one arrival and one departure[J]. Journal of Civil Aviation University of China, 2009, 27(3): 20-22. (in Chinese) [16] 尹嘉男. 平行跑道机场地面容量评估技术研究[D]. 南京: 南京航空航天大学, 2011.YIN Jia-nan. Research on ground capacity evaluation technology of parallel runway airport[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese) [17] 曾维理, 刘丹丹, 杨磊, 等. 考虑延误传播的枢纽机场航班时刻优化方法[J]. 交通运输工程学报, 2023, 23(1): 242-255. doi: 10.19818/j.cnki.1671-1637.2023.01.018ZENG Wei-li, LIU Dan-dan, YANG Lei, et al. Flight schedule optimization method for hub airport considering delay propagation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 242-255. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.018 [18] WANG Bo, PENG Xiao-fei, SU Gang, et al. The integrated evaluation of airport ground movement performance based on GA-BP network[C]//IEEE. Proceedings of 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology. New York: IEEE, 2022: 450-455. [19] ONGKOWIJOYO H V, RUSENO N. Optimizing the utilization of third runway in Soekarno Hatta International Airport using time space analysis[J]. Angkasa Jurnal Ilmiah Bidang Teknologi, 2021, 13(1): 59-71. [20] SEKINE K, KATO F, KAGEYAMA K, et al. Data-driven simulation for evaluating the impact of lower arrival aircraft separation on available airspace and runway capacity at Tokyo International Airport[J]. Aerospace, 2021, 8(6): 165. doi: 10.3390/aerospace8060165 [21] YANG Peng, GAO Wei, SUN Jun-qing. Capacity analysis for parallel runway through agent-based simulation[J]. Mathematical Problems in Engineering, 2013, 2013: 505794. [22] CEM C, ERTAN C, AYDAN C, et al. Capacity and delay analysis for airport manoeuvring areas using simulation[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(1): 43-55. [23] CETEK F. A., CETEK C. Simulation modelling of runway capacity for flight training airports[J]. Aeronautical Journal, 2014, 118: 143-154. [24] IRVINE D, BUDD L C S, PITFIELD D E. A Monte-Carlo approach to estimating the effects of selected airport capacity options in London[J]. Journal of Air Transport Management, 2015, 42: 1-9. [25] 钟育鸣, 韩松臣, 张旭婧. 机场容量评估中仿真飞机流的设计与实现[J]. 交通与计算机, 2008, 26(6): 120-123, 142.ZHONG Yu-ming, HAN Song-chen, ZHANG Xu-jing. Design and implementation of aircrafts flowing simulation in airport capacity evaluation[J]. Computer and Communications, 2008, 26(6): 120-123, 142. (in Chinese) [26] 康瑞, 杨凯. 民航支线机场跑道容量评估模型设计与仿真[J]. 计算机仿真, 2016, 33(3): 32-36.KANG Rui, YANG Kai. Design and simulation of runway capacity estimation model for feeder airports[J]. Computer Simulation, 2016, 33(3): 32-36. (in Chinese) [27] 杜晓鸣, 刘一. 北京新机场规划设计中的模拟仿真技术研究及应用[J]. 民航管理, 2018(6): 50-53.DU Xiao-ming, LIU Yi. Research and application of simulation technology in planning and design of Beijing new airport[J]. Civil Aviation Management, 2018(6): 50-53. (in Chinese) [28] 黄宝军, 房晓丹, 王洁宁. 基于多Agent的跑道侵入风险分析建模及仿真[J]. 系统仿真学报, 2017, 29(4): 910-917.HUANG Bao-jun, FANG Xiao-dan, WANG Jie-ning. Risk simulation analysis of runway incursions based on multi agents[J]. Journal of System Simulation, 2017, 29(4): 910-917. [29] FRICKE H, FÖRSTER S, VOGEL M. Using agent-based modeling to determine collision risk in complex TMA environments: the turn-onto-ILS-final safety case[J]. Aeronautics and Aerospace Open Access Journal, 2018, 2(3): 155-164. [30] VERMA A, TAHLYAN D, BHUSARI S. Agent based simulation model for improving passenger service time at Bangalore airport[J]. Case Studies on Transport Policy, 2020, 8(1): 85-93. [31] METZNER N. A comparison of agent-based and discrete event simulation for assessing airport terminal resilience[J]. Transportation Research Procedia, 2019, 43: 209-218. -