Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train
-
摘要: 为研究机电耦合作用下齿轮箱体和牵引电机的振动幅值、频谱分布及其随高速列车行驶速度的变化趋势, 分析了三相逆变器输出电压谐波频率分布与牵引电机谐波转矩, 建立了传动系统扭振模型; 基于直接转矩控制理论与车辆系统动力学理论, 搭建了牵引电机控制模型和高速列车多体动力学模型; 通过Simulink和SIMPACK联合仿真平台对比了恒力矩输入与含有谐波转矩的力矩输入模型, 分析了不同速度下牵引电机谐波转矩对高速列车齿轮箱体和牵引电机振动特性的影响。分析结果表明: 当高速列车以250 km·h-1的速度匀速运行时, 齿轮箱体大齿轮上方纵向振动、小齿轮上方纵向与垂向振动受牵引电机谐波转矩影响显著, 在700 Hz主频处振动加速度幅值显著增大, 该频率恰为牵引电机输出转矩基波频率的6倍; 在谐波转矩的影响下, 牵引电机在52 Hz主频处横向振动加速度幅值增加52.78%, 在49 Hz主频处垂向振动加速度幅值增加18.95%;随着高速列车速度的增加, 齿轮箱体纵向与牵引电机各向振动加速度逐渐增加, 牵引电机谐波转矩对齿轮箱体纵向振动加速度均方根的影响逐渐减小, 在6倍基波频率处, 齿轮箱体小齿轮上方和牵引电机纵向与垂向振动加速度均先增大后减小, 在速度为250 km·h-1时达到极大值, 且齿轮箱体和牵引电机的垂向振动受6倍基波频率谐波转矩的影响比纵向振动更为明显, 而其横向振动特性几乎不受谐波转矩的影响。Abstract: In order to research the vibration amplitudes and frequency spectrum distributions of gear box housing and traction motor under the coupling action of electromechanics and their changing trends with the speed of high-speed train, the harmonic frequency distribution of three-phase inverter output voltage and the harmonic torque of traction motor were analyzed, and the torsional vibration model of drive system was established. Based on the theories of direct torque control and vehicle system dynamics, the traction motor control model and multi-body dynamics model of high-speed train were constructed. By means of Simulink-SIMPACK joint simulation platform, the constant torque input model was compared with the torque input model with harmonic torque, and the effects of traction motor harmonic torque on the vibration characteristics of high-speed train gear box housing and traction motor were analyzed at different speeds. Analysis result shows that when the high-speed train runs at a uniform speed of 250 km·h-1, the longitudinal vibration above the large gear, the longitudinal and vertical vibrations above the small gear of gear box housing are seriously affected by the traction motor harmonic torque. The vibration acceleration amplitude increases significantly at the main frequency of 700 Hz that is exactly up to the 6 times of fundamental frequency of traction motor output torque. Under the influence of harmonic torque, the transverse vibration acceleration amplitude of traction motor at the main frequency of 52 Hz increases by 52.78%, and the vertical vibration acceleration amplitude at the main frequency of 49 Hz increases by 18.95%. As the speed of high-speed train increases, the longitudinal vibration of gear box housing and each direction vibration acceleration of traction motor increase gradually, and the influence of traction motor harmonic torque on the root mean square(RMS) of longitudinal vibration acceleration of gear box housing decreases gradually. The longitudinal and vertical vibration accelerations above the small gear of gear box housing and traction motor increase first and then decrease at the 6 times of fundamental frequency, and reach the maximum at the speed of 250 km·h-1. The influences of 6 times fundamental frequency of harmonic torque on the vertical vibrations of gear box housing and traction motor are more obvious than those on their longitudinal vibrations, and the harmonic torque has slight influence on their lateral vibration characteristics.
-
Key words:
- vehicle engineering /
- harmonic torque /
- joint simulation /
- traction motor /
- gear box housing /
- vibration
-
表 1 模型自由度
Table 1. Degrees of freedom of model
表 2 模态频率
Table 2. Modal frequencies
Hz 阶数 1 2 3 4 5 6 7 8 电机 1.26 5.10 23.04 34.42 48.99 55.00 73.48 82.33 齿轮箱体 2.57 11.31 28.79 63.28 97.42 143.14 214.32 317.53 表 3 牵引电机与逆变器基本参数
Table 3. Basic parameters of traction motor and inverter
参数名称 参数值 参数名称 参数值 额定功率/kW 562 额定电压/kV 2.7 额定转速/(r·m-1) 4 100 额定频率/Hz 139 定子电阻/Ω 0.15 转子电阻/Ω 0.16 定子漏感/mH 1.42 转子漏感/mH 0.60 极对数 2 逆变器直流电压/kV 3 逆变器缓冲电阻/kΩ 1 逆变器二极管正向电压/V 1.4 表 4 齿轮箱体振动加速度均方根
Table 4. RMSs of vibration accelerations of gear box housing
m·s-2 测点编号 1 2 模型编号 1 2 1 2 纵向 3.43 3.26 1.88 1.81 横向 4.92 4.89 3.16 3.12 垂向 13.18 13.53 13.35 13.41 表 5 仿真参数设置
Table 5. Setting of simulation parameters
-
[1] CASE M J, TOWN C. Torque pulsations in current-source inverter induction motor drives[J]. Archiv für Elektrotechnik, 1983, 66(2): 111-115. doi: 10.1007/BF01583900 [2] CHEN Xing, HU Ji-bin, CHEN Kai, et al. Modeling of electromagnetic torque considering saturation and magnetic field harmonics in permanent magnet synchronous motor for HEV[J]. Simulation Modelling Practice and Theory, 2016, 66: 212-225. doi: 10.1016/j.simpat.2016.02.012 [3] AVANISH T, NARAYANAN G. Analytical evaluation and reduction of torque harmonics in induction motor drives operated at low pulse numbers[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 967-976. doi: 10.1109/TIE.2018.2835383 [4] LU Yu-sheng, LIN Shuan-min, HAUSCHILD M, et al. A torque-ripple compensation scheme for harmonic drive systems[J]. Electrical Engineering, 2013, 95(4): 357-365. doi: 10.1007/s00202-012-0264-4 [5] SATHEESH G, REDDY T B, SAIBABU C. A family of random PWM algorithms for reduction of torque ripple and current harmonics of direct torque controlled open end winding induction motor[J]. Journal of Control, Automation and Electrical Systems, 2014, 25(3): 349-357. doi: 10.1007/s40313-013-0105-3 [6] TAHERI A. Harmonic reduction of direct torque control of six-phase induction motor[J]. ISA Transactions, 2016, 63: 299-314. doi: 10.1016/j.isatra.2016.02.014 [7] ASADZADEH V, DASTFAN A, DARABI A. Selective harmonic elimination in direct torque controlled permanent magnet synchronous motor drive[J]. COMPEL—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, 38(1): 153-166. doi: 10.1108/COMPEL-10-2017-0425 [8] 张海洋, 徐海平, 方程, 等. 基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法[J]. 中国电机工程学报, 2018, 38(4): 1222-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201804027.htmZHANG Hai-yang, XU Hai-ping, FANG Cheng, et al. Torque ripple suppression method of direct-drive permanent magnet synchronous motor based on resonant digital filter[J]. Proceedings of the CSEE, 2018, 38(4): 1222-1231. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201804027.htm [9] 陈诗阳, 于蓬, 章桐, 等. 基于电流谐波优化的驱动电机转矩波动控制[J]. 机电一体化, 2016(3): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JDTH201603008.htmCHEN Shi-yang, YU Peng, ZHANG Tong, et al. Active control of the electrical machines fluctuating torque based on current harmonics optimization[J]. Mechatronics, 2016(3): 41-45. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JDTH201603008.htm [10] 杜晓彬, 黄开胜, 黄信. 基于谐波分析的永磁电机齿槽转矩抑制[J]. 微特电机, 2019, 47(1): 37-40. doi: 10.3969/j.issn.1004-7018.2019.01.009DU Xiao-bin, HUANG Kai-sheng, HUANG Xin. Reduction of cogging torque of permanent magnet machines based on harmonic analysis[J]. Small and Special Electrical Machines, 2019, 47(1): 37-40. (in Chinese). doi: 10.3969/j.issn.1004-7018.2019.01.009 [11] 宋守许, 李诺楠, 杜毅, 等. 抑制永磁同步电机转矩脉动的转子再设计方法[J]. 中国机械工程, 2019, 30(17): 2084-2090, 2134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201917011.htmSONG Shou-xu, LI Nuo-nan, DU Yi, et al. Rotor redesign method for suppressing torque ripples of permanent magnet synchronous motors[J]. China Mechanical Engineering, 2019, 30(17): 2084-2090, 2134. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201917011.htm [12] HENAO H, KIA S H, CAPOLINO G A. Torsional-vibration assessment and gear-fault diagnosis in railway traction system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1707-1717. doi: 10.1109/TIE.2011.2106094 [13] DONOLO P, BOSSIO G, DE ANEELO C, et al. Voltage unbalance and harmonic distortion effects on induction motor power, torque and vibrations[J]. Electric Power Systems Research, 2016, 140: 866-873. doi: 10.1016/j.epsr.2016.04.018 [14] SCHRELER L, BENDL J, CHOMAT M. Analysis of influence of third spatial harmonic on currents and torque of multi-phase synchronous machine with permanent magnets[J]. Electrical Engineering, 2018, 100(3): 2095-2102. doi: 10.1007/s00202-018-0686-8 [15] 王文勋. 动车组牵引电机转矩脉动研究[D]. 北京: 北京交通大学, 2015.WANG Wen-xun. Research on torque ripple of traction motors in electric multiple units[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese). [16] 毛钰, 左曙光, 林福, 等. 转矩波动下电动轮纵向阶次振动特性及理论分析[J]. 同济大学学报(自然科学版), 2016, 44(11): 1735-1742. doi: 10.11908/j.issn.0253-374x.2016.11.014MAO Yu, ZUO Shu-guang, LIN Fu, et al. Experimental and theoretical analysis of horizontal order vibration characteristics of electric wheel under torque ripple[J]. Journal of Tongji University (Natural Science), 2016, 44(11): 1735-1742. (in Chinese). doi: 10.11908/j.issn.0253-374x.2016.11.014 [17] 夏薇, 王凯, 张建亚, 等. 基于谐振控制器的谐波削极型永磁同步电机转矩脉动抑制策略[J]. 中国电机工程学报, 2019, 39(18): 5499-5508. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201918024.htmXIA Wei, WANG Kai, ZHANG Jian-ya, et al. Torque ripple suppression of permanent magnet synchronous motor with harmonic shaped rotors based on resonance controllers[J]. Proceedings of the CSEE, 2019, 39(18): 5499-5508. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201918024.htm [18] 李葛亮. 基于比例谐振调节器的地铁车辆牵引电机谐波抑制研究[J]. 铁道机车车辆, 2019, 39(4): 111-115. doi: 10.3969/j.issn.1008-7842.2019.04.25LI Ge-liang. Research on harmonic suppression of urban rail transit traction motor based on proportional resonant regulator[J]. Railway Locomotive and Car, 2019, 39(4): 111-115. (in Chinese). doi: 10.3969/j.issn.1008-7842.2019.04.25 [19] LEVA S, MORANDO A P, COLOMBAIONI P. Dynamic analysis of a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2008, 57(1): 107-119. [20] REN Z, RAZEK A. A strong coupled model for analysing dynamic behaviours of non-linear electromechanical systems[J]. IEEE Transactions on Industrial Magnetics, 1994, 30(5): 3252-3255. doi: 10.1109/20.312631 [21] 崔利通, 池茂儒, 朱旻昊, 等. 高速列车机电一体化控制仿真与分析[J]. 铁道机车车辆, 2014, 34(5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201405004.htmCUI Li-tong, CHI Mao-ru, ZHU Min-hao, et al. Simulation and analysis of electromechanical integration control in high speed trains[J]. Railway Locomotive and Car, 2014, 34(5): 6-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201405004.htm [22] 王华, 崔利通. 高速列车传动系统机电耦合仿真与分析[J]. 机车电传动, 2015(2): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502010.htmWANG Hua, CUI Li-tong. Simulation and analysis of electromechanical integration for drive system in high-speed trains[J]. Electric Drive for Locomotives, 2015(2): 31-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502010.htm [23] 赵怀耘, 刘建新, 翟婉明. 异步牵引电机谐波转矩对机车动力学的影响[J]. 西南交通大学学报, 2009, 44(2): 269-273. doi: 10.3969/j.issn.0258-2724.2009.02.023ZHAO Huai-yun, LIU Jian-xin, ZHAI Wan-ming. Effects of harmonic torques of asynchronous traction motor on locomotive dynamics[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 269-273. (in Chinese). doi: 10.3969/j.issn.0258-2724.2009.02.023 [24] 黄冠华, 张卫华, 宋纾崎, 等. 高速列车驱动齿轮内部动态激扰影响分析[J]. 机械传动, 2014, 38(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201401022.htmHUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Analysis of effect of inner dynamic excitation on driving gear of high-speed train[J]. Journal of Mechanical Transmission, 2014, 38(1): 92-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201401022.htm [25] 黄冠华, 张卫华, 宋纾崎, 等. 高速列车齿轮传动系统谐振分析[J]. 交通运输工程学报, 2014, 14(6): 51-58. doi: 10.3969/j.issn.1671-1637.2014.06.007HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Harmonic resonance analysis of gear transmission system for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.007 [26] 李广全, 刘志明, 呙如兵, 等. 高速列车齿轮箱应力响应与疲劳损伤评估[J]. 交通运输工程学报, 2018, 18(1): 79-88. doi: 10.3969/j.issn.1671-1637.2018.01.008LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.008 [27] 王文静, 李广全, 韩俊臣, 等. 高速列车齿轮箱箱体动应力影响规律[J]. 交通运输工程学报, 2019, 19(1): 85-95. doi: 10.3969/j.issn.1671-1637.2019.01.009WANG Wen-jing, LI Guang-quan, HAN Jun-chen, et al. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.009 [28] 刘文生, 李文. 牵引电机传动装置振动特性仿真分析[J]. 铁道学报, 2013, 35(8): 44-47. doi: 10.3969/j.issn.1001-8360.2013.08.007LIU Wen-sheng, LI Wen. Simulation analysis on vibration characteristics of traction motor transmission device[J]. Journal of the China Railway Society, 2013, 35(8): 44-47. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.08.007 [29] 李翔飞. 高速列车牵引电机转向架轴系扭振研究[D]. 北京: 北京交通大学, 2015.LI Xiang-fei. Shafts torsional vibration between traction motor and bogie of high-speed train[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese). [30] 赵心颖, 林飞, 杨中平, 等. 高速列车牵引传动系统机电耦合振动特性研究[J]. 铁道学报, 2018, 40(9): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809007.htmZHAO Xin-ying, LIN Fei, YANG Zhong-ping, et al. Study on mechanism and suppression of electromechanical coupling vibration in traction drive system of high-speed train[J]. Journal of the China Railway Society, 2018, 40(9): 40-47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809007.htm [31] 陈哲明, 王理章, 喻洋. 联合仿真下谐波转矩对高速列车的动力学分析[J]. 机械设计与制造, 2016(3): 124-126, 130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201603034.htmCHEN Zhe-ming, WANG Li-zhang, YU Yang. Dynamic analysis of high speed train under the harmonic torque of the joint simulation[J]. Machinery Design and Manufacture, 2016(3): 124-126, 130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201603034.htm [32] 徐坤, 曾京, 祁亚运, 等. 牵引电机谐波转矩对高速动车动力学性能的影响[J]. 振动与冲击, 2018, 37(19): 153-158, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819025.htmXU Kun, ZENG Jing, QI Ya-yun, et al. Influences of harmonic torque of traction motor on dynamic performance of high-speed trains[J]. Journal of Vibration and Shock, 2018, 37(19): 153-158, 182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819025.htm