WANG Hai, CAI Ying-feng, YUAN Chao-chun. AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013
Citation: WANG Hai, CAI Ying-feng, YUAN Chao-chun. AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013

AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier

doi: 10.19818/j.cnki.1671-1637.2015.02.013
More Information
  • Author Bio:

    WANG Hai(1983-), male, lecturer, PhD, +86-511-88782390, wanghai1019@163.com

  • Received Date: 2014-10-10
  • Publish Date: 2015-02-25
  • Focusing on the problem that the vehicle detection rate of existed vehicle detection algorithms is lower in real complex road environment, a vehicle detection algorithm was proposed, in which multi-model weak classifiers were integrated into strong classifier by using AdaBoost-Bagging method.In the algorithm, discriminative model could generate a fine decision boundary by using more features, and generative model could eliminate negative examples by using fewer features.To combine the advantages of discriminative model and generative model, discriminative classifier with Haar feature and generative classifier with HOG feature were built.Combined with AdaBoost algorithm, AdaBoost-Bagging strong classifier was obtained by using Bagging algorithm that is an integrated learning algorithm with strong generalization ability.Vehicle detection algorithm was tested based on Caltech1999 dataset and real road images.Test result indicates that compared with sole mode weak classifier, AdaBoost-Bagging strong classifier maintains superiority in classification ability and processing time, its high detection rate and low false detection rate are 95.7%, 0.000 27% respectively, and the detection time of each frame is 25 ms that is less.Compared with the traditional cascade AdaBoost classifier, the detection time of the AdaBoost-Bagging strong classifier increases 12%, the training time increases 30%, but the detection rate increases 1.8%, and the false detection rate decreases 0.000 06%.The proposed algorithm is better than other vehicle detection algorithms, including Haar featurebased AdaBoost classifier, HOG feature-based SVM classifier, HOG feature-based DPM classifier, and has better vehicle detection effect.

     

  • loading
  • [1]
    YOO H, YANG U, SOHN K. Gradient-enhancing conversion for illumination-robust lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1083-1094. doi: 10.1109/TITS.2013.2252427
    [2]
    PEDERSOLI M, GONZÀLEZ J, HU X, et al. Toward real-time pedestrian detection based on a deformable template model[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 355-364. doi: 10.1109/TITS.2013.2281207
    [3]
    LIU Qing-hua, CHUNG E, ZHAI Liu-jia. Fusing moving average model and stationary wavelet decomposition for automatic incident detection: case study of Tokyo expressway[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 404-414. doi: 10.1016/S2095-7564(15)30290-7
    [4]
    VÁZQUEZ D, LÓPEZ A M, MARÍN J, et al. Virtual and real world adaptation for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 797-809. doi: 10.1109/TPAMI.2013.163
    [5]
    马雷, 臧俊杰, 张润生. 不同光照条件下前方车辆识别方法[J]. 汽车工程, 2012, 34(4): 360-366, 332. doi: 10.3969/j.issn.1000-680X.2012.04.017

    MA Lei, ZANG Jun-jie, ZHANG Run-sheng. Front vehicle identification under different lighting conditions[J]. Automotive Engineering, 2012, 34(4): 360-366, 332. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.04.017
    [6]
    SHAW A A, GOPALAN N P. Finding frequent trajectories by clustering and sequential pattern mining[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 393-403. doi: 10.1016/S2095-7564(15)30289-0
    [7]
    许庆, 高峰, 徐国艳. 基于Haar特征的前车识别算法[J]. 汽车工程, 2013, 35(4): 381-384. doi: 10.3969/j.issn.1000-680X.2013.04.018

    XU Qing, GAO Feng, XU Guo-yan. An algorithm for frontvehicle detection based on Haar-like feature[J]. Automotive Engineering, 2013, 35(4): 381-384. (in Chinese). doi: 10.3969/j.issn.1000-680X.2013.04.018
    [8]
    HSIEH J W, CHEN L C, CHEN D Y. Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 6-20. doi: 10.1109/TITS.2013.2294646
    [9]
    CHEON M, LEE W, YOON C, et al. Vision-based vehicle detection system with consideration of the detecting location[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1243-1252. doi: 10.1109/TITS.2012.2188630
    [10]
    SUN Z, BEBIS G, MILLER R. On-road vehicle detection: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 694-711. doi: 10.1109/TPAMI.2006.104
    [11]
    VIOLA P, JONES M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
    [12]
    VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]∥IEEE. Proceedings of the2001IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2001: 511-518.
    [13]
    SUN Z, BEBIS G, MILLER R. Monocular precrash vehicle detection: features and classifiers[J]. IEEE Transactions on Image Processing, 2006, 15(7): 2019-2034. doi: 10.1109/TIP.2006.877062
    [14]
    PONSA D, LOPEZ A. Cascade of classifiers for vehicle detection[C]∥BLANC-TALON J, PHILIPS W, POPESCU D, et al. Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems. Heidelberg: Springer, 2007: 980-989.
    [15]
    WITHOPF D, JÄHNE B. Improved training algorithm for tree-like classifiers and its application to vehicle detection[C]∥IEEE. Proceedings of the 2007IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 642-647.
    [16]
    KAÂNICHE M B, BRÉMOND F. Recognizing gestures by learning local motion signatures of HOG descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2247-2258. doi: 10.1109/TPAMI.2012.19
    [17]
    MORANDUZZO T, MELGANI F. A SIFT-SVM method for detecting cars in UAV images[C]∥IEEE. 2012IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2012: 6868-6871.
    [18]
    孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8): 1921-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm

    SUN Rui, CHEN Jun, GAO Jun. Fast pedestrian detection based on saliency detection and HOG-NMF features[J]. Journal of Electronics and Information Technology, 2013, 35(8): 1921-1926. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm
    [19]
    蔡益红. 多特征融合的道路车辆检测方法[J]. 计算技术与自动化, 2013, 32(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201301024.htm

    CAI Yi-hong. Fusing multiple features to detect on-road vehicles[J]. Computing Technology and Automation, 2013, 32(1): 98-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201301024.htm
    [20]
    GEISMANN P, SCHNEIDER G. A two-staged approach to vision-based pedestrian recognition using Haar and HOG features[C]∥IEEE. 2008IEEE Intelligent Vehicles Symposium. New York: IEEE, 2008: 554-559.
    [21]
    PORIKLI F. Integral histogram: a fast way to extract histograms in Cartesian spaces[C]∥IEEE. Proceedings of the2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 829-836.
    [22]
    JU Yu-cui, ZHANG Hua, XUE Yan-bing. Research of feature selection and comparison in AdaBoost based object detection system[J]. Journal of Computational Information Systems, 2013, 9(22): 8947-8954.
    [23]
    CHANG W C, CHO C W. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2010, 40(3): 892-902. doi: 10.1109/TSMCB.2009.2032527
    [24]
    YUAN Q, THANGALI A, ABLAVSKY V, et al. Learning a family of detectors via multiplicative kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 514-530. doi: 10.1109/TPAMI.2010.117
    [25]
    NIKNEJAD H T, TAKEUCHI A, MITA S, et al. On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 748-758.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (619) PDF downloads(1084) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return