Citation: | WANG Hai, CAI Ying-feng, YUAN Chao-chun. AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.02.013 |
[1] |
YOO H, YANG U, SOHN K. Gradient-enhancing conversion for illumination-robust lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1083-1094. doi: 10.1109/TITS.2013.2252427
|
[2] |
PEDERSOLI M, GONZÀLEZ J, HU X, et al. Toward real-time pedestrian detection based on a deformable template model[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 355-364. doi: 10.1109/TITS.2013.2281207
|
[3] |
LIU Qing-hua, CHUNG E, ZHAI Liu-jia. Fusing moving average model and stationary wavelet decomposition for automatic incident detection: case study of Tokyo expressway[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 404-414. doi: 10.1016/S2095-7564(15)30290-7
|
[4] |
VÁZQUEZ D, LÓPEZ A M, MARÍN J, et al. Virtual and real world adaptation for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 797-809. doi: 10.1109/TPAMI.2013.163
|
[5] |
马雷, 臧俊杰, 张润生. 不同光照条件下前方车辆识别方法[J]. 汽车工程, 2012, 34(4): 360-366, 332. doi: 10.3969/j.issn.1000-680X.2012.04.017
MA Lei, ZANG Jun-jie, ZHANG Run-sheng. Front vehicle identification under different lighting conditions[J]. Automotive Engineering, 2012, 34(4): 360-366, 332. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.04.017
|
[6] |
SHAW A A, GOPALAN N P. Finding frequent trajectories by clustering and sequential pattern mining[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 393-403. doi: 10.1016/S2095-7564(15)30289-0
|
[7] |
许庆, 高峰, 徐国艳. 基于Haar特征的前车识别算法[J]. 汽车工程, 2013, 35(4): 381-384. doi: 10.3969/j.issn.1000-680X.2013.04.018
XU Qing, GAO Feng, XU Guo-yan. An algorithm for frontvehicle detection based on Haar-like feature[J]. Automotive Engineering, 2013, 35(4): 381-384. (in Chinese). doi: 10.3969/j.issn.1000-680X.2013.04.018
|
[8] |
HSIEH J W, CHEN L C, CHEN D Y. Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 6-20. doi: 10.1109/TITS.2013.2294646
|
[9] |
CHEON M, LEE W, YOON C, et al. Vision-based vehicle detection system with consideration of the detecting location[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1243-1252. doi: 10.1109/TITS.2012.2188630
|
[10] |
SUN Z, BEBIS G, MILLER R. On-road vehicle detection: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 694-711. doi: 10.1109/TPAMI.2006.104
|
[11] |
VIOLA P, JONES M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
|
[12] |
VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]∥IEEE. Proceedings of the2001IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2001: 511-518.
|
[13] |
SUN Z, BEBIS G, MILLER R. Monocular precrash vehicle detection: features and classifiers[J]. IEEE Transactions on Image Processing, 2006, 15(7): 2019-2034. doi: 10.1109/TIP.2006.877062
|
[14] |
PONSA D, LOPEZ A. Cascade of classifiers for vehicle detection[C]∥BLANC-TALON J, PHILIPS W, POPESCU D, et al. Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems. Heidelberg: Springer, 2007: 980-989.
|
[15] |
WITHOPF D, JÄHNE B. Improved training algorithm for tree-like classifiers and its application to vehicle detection[C]∥IEEE. Proceedings of the 2007IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 642-647.
|
[16] |
KAÂNICHE M B, BRÉMOND F. Recognizing gestures by learning local motion signatures of HOG descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2247-2258. doi: 10.1109/TPAMI.2012.19
|
[17] |
MORANDUZZO T, MELGANI F. A SIFT-SVM method for detecting cars in UAV images[C]∥IEEE. 2012IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2012: 6868-6871.
|
[18] |
孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8): 1921-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm
SUN Rui, CHEN Jun, GAO Jun. Fast pedestrian detection based on saliency detection and HOG-NMF features[J]. Journal of Electronics and Information Technology, 2013, 35(8): 1921-1926. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm
|
[19] |
蔡益红. 多特征融合的道路车辆检测方法[J]. 计算技术与自动化, 2013, 32(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201301024.htm
CAI Yi-hong. Fusing multiple features to detect on-road vehicles[J]. Computing Technology and Automation, 2013, 32(1): 98-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201301024.htm
|
[20] |
GEISMANN P, SCHNEIDER G. A two-staged approach to vision-based pedestrian recognition using Haar and HOG features[C]∥IEEE. 2008IEEE Intelligent Vehicles Symposium. New York: IEEE, 2008: 554-559.
|
[21] |
PORIKLI F. Integral histogram: a fast way to extract histograms in Cartesian spaces[C]∥IEEE. Proceedings of the2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 829-836.
|
[22] |
JU Yu-cui, ZHANG Hua, XUE Yan-bing. Research of feature selection and comparison in AdaBoost based object detection system[J]. Journal of Computational Information Systems, 2013, 9(22): 8947-8954.
|
[23] |
CHANG W C, CHO C W. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2010, 40(3): 892-902. doi: 10.1109/TSMCB.2009.2032527
|
[24] |
YUAN Q, THANGALI A, ABLAVSKY V, et al. Learning a family of detectors via multiplicative kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 514-530. doi: 10.1109/TPAMI.2010.117
|
[25] |
NIKNEJAD H T, TAKEUCHI A, MITA S, et al. On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 748-758.
|