Citation: | HUANG Wei, HU Yang. Cell transmission model considering queuing characteristics of channelized zone at intersections[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 212-224. doi: 10.19818/j.cnki.1671-1637.2023.02.015 |
[1] |
GUO Qiang-qiang, LI Li, BAN X J. Urban traffic signal control with connected and automated vehicles: a survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 313-334. doi: 10.1016/j.trc.2019.01.026
|
[2] |
李素兰, 张谢东, 施俊庆, 等. 信号控制交叉口交通流建模与通行能力分析[J]. 公路交通科技, 2017, 34(12): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201712017.htm
LI Su-lan, ZHANG Xie-dong, SHI Jun-qing, et al. Traffic flow modeling and capacity analysis of signalized intersection[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 108-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201712017.htm
|
[3] |
LIGHTHILL M J, WHITHAM G B. On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 229(1178): 317-345.
|
[4] |
RICHARDS P I. Shock waves on the highway[J]. Operations Research, 1956, 4(1): 42-51. doi: 10.1287/opre.4.1.42
|
[5] |
DAGANZO C F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
|
[6] |
DAGANZO C F. The cell transmission model, Part Ⅱ: network traffic[J]. Transportation Research Part B: Methodological, 1995, 29(2): 79-93. doi: 10.1016/0191-2615(94)00022-R
|
[7] |
孙剑, 殷炬元, 黎淘宁. 快速路入口匝道瓶颈宏观交通流模型[J]. 交通运输工程学报, 2019, 19(3): 122-133. doi: 10.3969/j.issn.1671-1637.2019.03.013
SUN Jian, YIN Ju-yuan, LI Tao-ning. Macroscopic traffic flow model of expressway on-ramp bottlenecks[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 122-133. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.013
|
[8] |
WANG Yi-bing, ZHAO Ming-ming, YU Xiang-hua, et al. Real-time joint traffic state and model parameter estimation on freeways with fixed sensors and connected vehicles: state-of-the-art overview, methods, and case studies[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103444. doi: 10.1016/j.trc.2021.103444
|
[9] |
ADACHER L, TIRIOLO M. A macroscopic model with the advantages of microscopic model: a review of cell transmission model's extensions for urban traffic networks[J]. Simulation Modelling Practice and Theory, 2018, 86: 102-119. doi: 10.1016/j.simpat.2018.05.003
|
[10] |
SRIVASTAVA A, JIN Wen-long, LEBACQUE J P. A modified cell transmission model with realistic queue discharge features at signalized intersections[J]. Transportation Research Part B: Methodological, 2015, 81: 302-315. doi: 10.1016/j.trb.2015.05.013
|
[11] |
RONCOLI C, PAPAGEORGIOU M, PAPAMICHAIL I. Traffic flow optimisation in presence of vehicle automation and communication systems—Part I: a first-order multi-lane model for motorway traffic[J]. Transportation Research Part C: Emerging Technologies, 2015, 57: 241-259. doi: 10.1016/j.trc.2015.06.014
|
[12] |
HAN Yu, YUAN Yu-fei, HEGYI A, et al. New extended discrete first-order model to reproduce propagation of jam waves[J]. Transportation Research Record, 2016, 2560(1): 108-118. doi: 10.3141/2560-12
|
[13] |
HAN Yu, HEGYI A, YUAN Yu-fei, et al. Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 405-420. doi: 10.1016/j.trc.2017.02.009
|
[14] |
YUAN Kai, KNOOP V L, HOOGENDOORN S P. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: application to homogeneous road stretches and discontinuities[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 465: 472-485. doi: 10.1016/j.physa.2016.08.060
|
[15] |
KONTORINAKI M, SPILIOPOULOU A, RONCOLI C, et al. First-order traffic flow models incorporating capacity drop: overview and real-data validation[J]. Transportation Research Part B: Methodological, 2017, 106: 52-75. doi: 10.1016/j.trb.2017.10.014
|
[16] |
SHIRKE C, BHASKAR A, CHUNG E. Macroscopic modelling of arterial traffic: an extension to the cell transmission model[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 54-80. doi: 10.1016/j.trc.2019.05.033
|
[17] |
龙建成. 城市道路交通拥堵传播规律及消散控制策略研究[D]. 北京: 北京交通大学, 2009.
LONG Jian-cheng. Studies on congestion propagation properties and dissipation control strategies of urban road traffic[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese)
|
[18] |
姚凯斌, 林培群. 一种考虑交叉口因素的改进元胞传输模型[J]. 交通运输系统工程与信息, 2017, 17(3): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703016.htm
YAO Kai-bin, LIN Pei-qun. An improved cell transmission model considering intersection factor[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703016.htm
|
[19] |
胡晓健, 王炜, 盛慧. 基于可变元胞传输模型的城市道路交通流估计方法[J]. 交通运输系统工程与信息, 2010, 10(4): 73-78. doi: 10.3969/j.issn.1009-6744.2010.04.011
HU Xiao-jian, WANG Wei, SHENG Hui. Urban traffic flow prediction with variable cell transmission model[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 73-78. (in Chinese) doi: 10.3969/j.issn.1009-6744.2010.04.011
|
[20] |
刘昊翔. 基于元胞传输模型的交叉口交通控制与优化研究[D]. 北京: 北京交通大学, 2011.
LIU Hao-xiang. Traffic controlling and optimizing at an intersection based on the cell transmission model[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
|
[21] |
LI Zi-chuan. Modeling arterial signal optimization with enhanced cell transmission formulations[J]. Journal of Transportation Engineering, 2011, 137(7): 445-454. doi: 10.1061/(ASCE)TE.1943-5436.0000232
|
[22] |
LIU Yue, CHANG G L. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(1): 130-144. doi: 10.1016/j.trc.2010.04.005
|
[23] |
TIRIOLO M, ADACHER L, CIPRIANI E. An urban traffic flow model to capture complex flow interactions among lane groups for signalized intersections[J]. Procedia—Social and Behavioral Sciences, 2014, 111: 839-848. doi: 10.1016/j.sbspro.2014.01.118
|
[24] |
CAREY M, BALIJEPALLI C, WATLING D. Extending the cell transmission model to multiple lanes and lane-changing[J]. Networks and Spatial Economics, 2015, 15(3): 507-535. doi: 10.1007/s11067-013-9193-7
|
[25] |
KIM Y, CHOI S, YEO H. Extended urban cell transmission model using agent-based modeling[J]. Procedia Computer Science, 2020, 170: 354-361. doi: 10.1016/j.procs.2020.03.058
|
[26] |
KIM Y, CHOI S, PARK J, et al. Agent-based mesoscopic urban traffic simulation based on multi-lane cell transmission model[J]. Procedia Computer Science, 2019, 151: 240-247. doi: 10.1016/j.procs.2019.04.035
|
[27] |
SUBRAVETI H H S N, KNOOP V L, VAN AREM B. First order multi-lane traffic flow model—an incentive based macroscopic model to represent lane change dynamics[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 1758-1779. doi: 10.1080/21680566.2019.1700846
|
[28] |
秦严严, 张健, 陈凌志, 等. 手动-自动驾驶混合交通流元胞传输模型[J]. 交通运输工程学报, 2020, 20(2): 229-238. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002019.htm
QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, et al. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 229-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002019.htm
|
[29] |
HAO Zhen-zhen, BOEL R, LI Zhi-wu. Model based urban traffic control, Part Ⅰ: local model and local model predictive controllers[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 61-81. doi: 10.1016/j.trc.2018.09.026
|
[30] |
WU Ning. Modelling blockage probability and capacity of shared lanes at signalized intersections[J]. Procedia—Social and Behavioral Sciences, 2011, 16: 481-491. doi: 10.1016/j.sbspro.2011.04.469
|
[31] |
ZHAO Shu-zhi, LIANG Shi-dong, LIU Hua-sheng, et al. CTM based real-time queue length estimation at signalized intersection[J]. Mathematical Problems in Engineering, 2015, 2015: 328712.
|
[32] |
LONG Jian-cheng, GAO Zi-you, ZHAO Xiao-mei, et al. Urban traffic jam simulation based on the cell transmission model[J]. Networks and Spatial Economics, 2011, 11(1): 43-64.
|